Ecological Inference

Ecological Inference
Author: Gary King
Publisher: Cambridge University Press
Total Pages: 436
Release: 2004-09-13
Genre: Nature
ISBN: 9780521542807

Drawing upon the recent explosion of research in the field, a diverse group of scholars surveys the latest strategies for solving ecological inference problems, the process of trying to infer individual behavior from aggregate data. The uncertainties and information lost in aggregation make ecological inference one of the most difficult areas of statistical inference, but these inferences are required in many academic fields, as well as by legislatures and the Courts in redistricting, marketing research by business, and policy analysis by governments. This wide-ranging collection of essays offers many fresh and important contributions to the study of ecological inference.

A Solution to the Ecological Inference Problem

A Solution to the Ecological Inference Problem
Author: Gary King
Publisher: Princeton University Press
Total Pages: 366
Release: 2013-09-20
Genre: Political Science
ISBN: 1400849209

This book provides a solution to the ecological inference problem, which has plagued users of statistical methods for over seventy-five years: How can researchers reliably infer individual-level behavior from aggregate (ecological) data? In political science, this question arises when individual-level surveys are unavailable (for instance, local or comparative electoral politics), unreliable (racial politics), insufficient (political geography), or infeasible (political history). This ecological inference problem also confronts researchers in numerous areas of major significance in public policy, and other academic disciplines, ranging from epidemiology and marketing to sociology and quantitative history. Although many have attempted to make such cross-level inferences, scholars agree that all existing methods yield very inaccurate conclusions about the world. In this volume, Gary King lays out a unique--and reliable--solution to this venerable problem. King begins with a qualitative overview, readable even by those without a statistical background. He then unifies the apparently diverse findings in the methodological literature, so that only one aggregation problem remains to be solved. He then presents his solution, as well as empirical evaluations of the solution that include over 16,000 comparisons of his estimates from real aggregate data to the known individual-level answer. The method works in practice. King's solution to the ecological inference problem will enable empirical researchers to investigate substantive questions that have heretofore proved unanswerable, and move forward fields of inquiry in which progress has been stifled by this problem.

Hierarchical Modeling and Inference in Ecology

Hierarchical Modeling and Inference in Ecology
Author: J. Andrew Royle
Publisher: Elsevier
Total Pages: 463
Release: 2008-10-15
Genre: Science
ISBN: 0080559255

A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods.This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures.The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution* abundance models based on many sampling protocols, including distance sampling* capture-recapture models with individual effects* spatial capture-recapture models based on camera trapping and related methods* population and metapopulation dynamic models* models of biodiversity, community structure and dynamics - Wide variety of examples involving many taxa (birds, amphibians, mammals, insects, plants) - Development of classical, likelihood-based procedures for inference, as well as Bayesian methods of analysis - Detailed explanations describing the implementation of hierarchical models using freely available software such as R and WinBUGS - Computing support in technical appendices in an online companion web site

Bayesian Inference

Bayesian Inference
Author: William A Link
Publisher: Academic Press
Total Pages: 355
Release: 2009-08-07
Genre: Science
ISBN: 0080889808

This text is written to provide a mathematically sound but accessible and engaging introduction to Bayesian inference specifically for environmental scientists, ecologists and wildlife biologists. It emphasizes the power and usefulness of Bayesian methods in an ecological context. The advent of fast personal computers and easily available software has simplified the use of Bayesian and hierarchical models . One obstacle remains for ecologists and wildlife biologists, namely the near absence of Bayesian texts written specifically for them. The book includes many relevant examples, is supported by software and examples on a companion website and will become an essential grounding in this approach for students and research ecologists. Engagingly written text specifically designed to demystify a complex subject Examples drawn from ecology and wildlife research An essential grounding for graduate and research ecologists in the increasingly prevalent Bayesian approach to inference Companion website with analytical software and examples Leading authors with world-class reputations in ecology and biostatistics

Mapping Species Distributions

Mapping Species Distributions
Author: Janet Franklin
Publisher: Cambridge University Press
Total Pages: 538
Release: 2010-01-07
Genre: Nature
ISBN: 1139485296

Maps of species' distributions or habitat suitability are required for many aspects of environmental research, resource management and conservation planning. These include biodiversity assessment, reserve design, habitat management and restoration, species and habitat conservation plans and predicting the effects of environmental change on species and ecosystems. The proliferation of methods and uncertainty regarding their effectiveness can be daunting to researchers, resource managers and conservation planners alike. Franklin summarises the methods used in species distribution modeling (also called niche modeling) and presents a framework for spatial prediction of species distributions based on the attributes (space, time, scale) of the data and questions being asked. The framework links theoretical ecological models of species distributions to spatial data on species and environment, and statistical models used for spatial prediction. Providing practical guidelines to students, researchers and practitioners in a broad range of environmental sciences including ecology, geography, conservation biology, and natural resources management.

Ecological Scale

Ecological Scale
Author: David Lawrence Peterson
Publisher: Columbia University Press
Total Pages: 638
Release: 1998
Genre: Science
ISBN: 9780231105033

Ecological Scale provides invaluable perspectives on the application of the concepts of measurement, analysis, and inference in both theoretical and applied ecology, ultimately providing a broad-based understanding for resource managers and other ecological professionals.

Ecological Inference

Ecological Inference
Author: Laura Irwin Langbein
Publisher: SAGE Publications, Incorporated
Total Pages: 78
Release: 1978
Genre: Social Science
ISBN:

Explores the utility of techniques designed to make the inferences in causal modeling more reliable, including a comparison between ecological regression models and ecological correlation.Learn more about "The Little Green Book" - QASS Series! Click Here

Bayesian Analysis for Population Ecology

Bayesian Analysis for Population Ecology
Author: Ruth King
Publisher: CRC Press
Total Pages: 457
Release: 2009-10-30
Genre: Mathematics
ISBN: 1439811881

Emphasizing model choice and model averaging, this book presents up-to-date Bayesian methods for analyzing complex ecological data. It provides a basic introduction to Bayesian methods that assumes no prior knowledge. The book includes detailed descriptions of methods that deal with covariate data and covers techniques at the forefront of research, such as model discrimination and model averaging. Leaders in the statistical ecology field, the authors apply the theory to a wide range of actual case studies and illustrate the methods using WinBUGS and R. The computer programs and full details of the data sets are available on the book's website.

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan
Author: Franzi Korner-Nievergelt
Publisher: Academic Press
Total Pages: 329
Release: 2015-04-04
Genre: Science
ISBN: 0128016787

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions—including all R codes—that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. - Introduces Bayesian data analysis, allowing users to obtain uncertainty measurements easily for any derived parameter of interest - Written in a step-by-step approach that allows for eased understanding by non-statisticians - Includes a companion website containing R-code to help users conduct Bayesian data analyses on their own data - All example data as well as additional functions are provided in the R-package blmeco

Model Selection and Multimodel Inference

Model Selection and Multimodel Inference
Author: Kenneth P. Burnham
Publisher: Springer Science & Business Media
Total Pages: 512
Release: 2007-05-28
Genre: Mathematics
ISBN: 0387224564

A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. The text has been written for biologists and statisticians using models for making inferences from empirical data.