Ecole d'Ete de Probabilites de Saint-Flour XXI - 1991

Ecole d'Ete de Probabilites de Saint-Flour XXI - 1991
Author: Donald A. Dawson
Publisher: Springer
Total Pages: 362
Release: 2006-11-14
Genre: Mathematics
ISBN: 3540476083

CONTENTS: D.D. Dawson: Measure-valued Markov Processes.- B. Maisonneuve: Processus de Markov: Naissance, Retournement, Regeneration.- J. Spencer: Nine lectures on Random Graphs.

Ecole d'Ete de Probabilites de Saint-Flour XX - 1990

Ecole d'Ete de Probabilites de Saint-Flour XX - 1990
Author: Mark I. Freidlin
Publisher: Springer
Total Pages: 248
Release: 2006-11-14
Genre: Mathematics
ISBN: 3540474900

CONTENTS: M.I. Freidlin: Semi-linear PDE's and limit theorems for large deviations.- J.F. Le Gall: Some properties of planar Brownian motion.

Anomalies in Partial Differential Equations

Anomalies in Partial Differential Equations
Author: Massimo Cicognani
Publisher: Springer Nature
Total Pages: 469
Release: 2021-02-03
Genre: Mathematics
ISBN: 3030613461

The contributions contained in the volume, written by leading experts in their respective fields, are expanded versions of talks given at the INDAM Workshop "Anomalies in Partial Differential Equations" held in September 2019 at the Istituto Nazionale di Alta Matematica, Dipartimento di Matematica "Guido Castelnuovo", Università di Roma "La Sapienza". The volume contains results for well-posedness and local solvability for linear models with low regular coefficients. Moreover, nonlinear dispersive models (damped waves, p-evolution models) are discussed from the point of view of critical exponents, blow-up phenomena or decay estimates for Sobolev solutions. Some contributions are devoted to models from applications as traffic flows, Einstein-Euler systems or stochastic PDEs as well. Finally, several contributions from Harmonic and Time-Frequency Analysis, in which the authors are interested in the action of localizing operators or the description of wave front sets, complete the volume.

Stochastics of Environmental and Financial Economics

Stochastics of Environmental and Financial Economics
Author: Fred Espen Benth
Publisher: Springer
Total Pages: 362
Release: 2015-10-23
Genre: Science
ISBN: 3319234250

These Proceedings offer a selection of peer-reviewed research and survey papers by some of the foremost international researchers in the fields of finance, energy, stochastics and risk, who present their latest findings on topical problems. The papers cover the areas of stochastic modeling in energy and financial markets; risk management with environmental factors from a stochastic control perspective; and valuation and hedging of derivatives in markets dominated by renewables, all of which further develop the theory of stochastic analysis and mathematical finance. The papers were presented at the first conference on “Stochastics of Environmental and Financial Economics (SEFE)”, being part of the activity in the SEFE research group of the Centre of Advanced Study (CAS) at the Academy of Sciences in Oslo, Norway during the 2014/2015 academic year.

The Fascination of Probability, Statistics and their Applications

The Fascination of Probability, Statistics and their Applications
Author: Mark Podolskij
Publisher: Springer
Total Pages: 529
Release: 2015-12-26
Genre: Mathematics
ISBN: 3319258265

Collecting together twenty-three self-contained articles, this volume presents the current research of a number of renowned scientists in both probability theory and statistics as well as their various applications in economics, finance, the physics of wind-blown sand, queueing systems, risk assessment, turbulence and other areas. The contributions are dedicated to and inspired by the research of Ole E. Barndorff-Nielsen who, since the early 1960s, has been and continues to be a very active and influential researcher working on a wide range of important problems. The topics covered include, but are not limited to, econometrics, exponential families, Lévy processes and infinitely divisible distributions, limit theory, mathematical finance, random matrices, risk assessment, statistical inference for stochastic processes, stochastic analysis and optimal control, time series, and turbulence. The book will be of interest to researchers and graduate students in probability, statistics and their applications.

Random Growth Models

Random Growth Models
Author: Michael Damron
Publisher: American Mathematical Soc.
Total Pages: 274
Release: 2018-09-27
Genre: Mathematics
ISBN: 1470435535

The study of random growth models began in probability theory about 50 years ago, and today this area occupies a central place in the subject. The considerable challenges posed by these models have spurred the development of innovative probability theory and opened up connections with several other parts of mathematics, such as partial differential equations, integrable systems, and combinatorics. These models also have applications to fields such as computer science, biology, and physics. This volume is based on lectures delivered at the 2017 AMS Short Course “Random Growth Models”, held January 2–3, 2017 in Atlanta, GA. The articles in this book give an introduction to the most-studied models; namely, first- and last-passage percolation, the Eden model of cell growth, and particle systems, focusing on the main research questions and leading up to the celebrated Kardar-Parisi-Zhang equation. Topics covered include asymptotic properties of infection times, limiting shape results, fluctuation bounds, and geometrical properties of geodesics, which are optimal paths for growth.

Stochastic Partial Differential Equations and Applications

Stochastic Partial Differential Equations and Applications
Author: Giuseppe Da Prato
Publisher: CRC Press
Total Pages: 480
Release: 2002-04-05
Genre: Mathematics
ISBN: 9780203910177

Based on the proceedings of the International Conference on Stochastic Partial Differential Equations and Applications-V held in Trento, Italy, this illuminating reference presents applications in filtering theory, stochastic quantization, quantum probability, and mathematical finance and identifies paths for future research in the field. Stochastic Partial Differential Equations and Applications analyzes recent developments in the study of quantum random fields, control theory, white noise, and fluid dynamics. It presents precise conditions for nontrivial and well-defined scattering, new Gaussian noise terms, models depicting the asymptotic behavior of evolution equations, and solutions to filtering dilemmas in signal processing. With contributions from more than 40 leading experts in the field, Stochastic Partial Differential Equations and Applications is an excellent resource for pure and applied mathematicians; numerical analysts; mathematical physicists; geometers; economists; probabilists; computer scientists; control, electrical, and electronics engineers; and upper-level undergraduate and graduate students in these disciplines.

Stochastic Modelling in Physical Oceanography

Stochastic Modelling in Physical Oceanography
Author: Robert Adler
Publisher: Springer Science & Business Media
Total Pages: 473
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461224306

The study of the ocean is almost as old as the history of mankind itself. When the first seafarers set out in their primitive ships they had to understand, as best they could, tides and currents, eddies and vortices, for lack of understanding often led to loss of live. These primitive oceanographers were, of course, primarily statisticians. They collected what empirical data they could, and passed it down, ini tially by word of mouth, to their descendants. Data collection continued throughout the millenia, and although data bases became larger, more re liable, and better codified, it was not really until surprisingly recently that mankind began to try to understand the physics behind these data, and, shortly afterwards, to attempt to model it. The basic modelling tool of physical oceanography is, today, the partial differential equation. Somehow, we all 'know" that if only we could find the right set of equations, with the right initial and boundary conditions, then we could solve the mysteries of ocean dynamics once and for all.