Applications of Data Mining to Electronic Commerce

Applications of Data Mining to Electronic Commerce
Author: Ronny Kohavi
Publisher: Springer Science & Business Media
Total Pages: 153
Release: 2012-12-06
Genre: Computers
ISBN: 1461516277

Applications of Data Mining to Electronic Commerce brings together in one place important contributions and up-to-date research results in this fast moving area. Applications of Data Mining to Electronic Commerce serves as an excellent reference, providing insight into some of the most challenging research issues in the field.

E-Commerce Big Data Mining and Analytics

E-Commerce Big Data Mining and Analytics
Author: Jie Cao
Publisher: Springer Nature
Total Pages: 217
Release: 2023
Genre: Big data
ISBN: 9819935881

This book seeks to give readers with a preliminary but critical introduction and summary of e-commerce and big data analysis. This book introduces how to achieve data acquisition and pre-processing. Specifically, this book provides three representative and interesting scenarios to demonstrate the application of e-commerce and big data analysis, i.e., trajectory big data mining technology, e-commerce fraud and anti-fraud, and recommendation system. Also this book provides the basic and illustrative operation steps of python programming language for e-commerce and big data analysis. By reading this book, readers can learn the basic concepts and principles of e-commerce and big data analysis.

Ecommerce Analytics

Ecommerce Analytics
Author: Judah Phillips
Publisher: FT Press
Total Pages: 523
Release: 2016-04-04
Genre: Computers
ISBN: 0134177967

Ecommerce analytics encompasses specific, powerful techniques for collecting, measuring, analyzing, dashboarding, optimizing, personalizing, and automating data related to online sales and customers. If you participate in the $220 billion ecommerce space, you need expert advice on applying these techniques in your unique environment. Ecommerce Analytics is the only book to deliver the focused, coherent, and practical guidance you’re looking for. Authored by leading consultant and analytics team leader Judah Phillips, it shows how to leverage your massive, complex data resources to improve efficiency, grow revenue, reduce cost, and above all, boost profitability. This landmark guide focuses on using analytics to solve critical problems ecommerce organizations face, from improving brand awareness and favorability through generating demand; shaping digital behavior to accelerating conversion, improving experience to nurturing and re-engaging customers. Phillips shows how to: Implement and unify ecommerce analytics related to product, transactions, customers, merchandising, and marketing More effectively measure performance associated with customer acquisition, conversion, outcomes, and business impact Use analytics to identify the tactics that will create the most value, and execute them more effectively Think about and analyze the behavior of customers, prospects, and leads in ecommerce experiences Optimize paid/owned/earned marketing channels, product mix, merchandising, pricing/promotions/sales, browsing/shopping/purchasing, and other ecommerce functions Understand and model attribution Structure and socialize ecommerce teams for success Evaluate the potential impact of technology choices and platforms Understand the implications of ecommerce analytics on customer privacy, life, and society Preview the future of ecommerce analytics over the next 20 years

Managerial Perspectives on Intelligent Big Data Analytics

Managerial Perspectives on Intelligent Big Data Analytics
Author: Sun, Zhaohao
Publisher: IGI Global
Total Pages: 357
Release: 2019-02-22
Genre: Computers
ISBN: 1522572783

Big data, analytics, and artificial intelligence are revolutionizing work, management, and lifestyles and are becoming disruptive technologies for healthcare, e-commerce, and web services. However, many fundamental, technological, and managerial issues for developing and applying intelligent big data analytics in these fields have yet to be addressed. Managerial Perspectives on Intelligent Big Data Analytics is a collection of innovative research that discusses the integration and application of artificial intelligence, business intelligence, digital transformation, and intelligent big data analytics from a perspective of computing, service, and management. While highlighting topics including e-commerce, machine learning, and fuzzy logic, this book is ideally designed for students, government officials, data scientists, managers, consultants, analysts, IT specialists, academicians, researchers, and industry professionals in fields that include big data, artificial intelligence, computing, and commerce.

Big Data, Mining, and Analytics

Big Data, Mining, and Analytics
Author: Stephan Kudyba
Publisher: CRC Press
Total Pages: 306
Release: 2014-03-12
Genre: Computers
ISBN: 1466568712

This book ties together big data, data mining, and analytics to explain how readers can leverage them to transform their business strategy. Illustrating basic approaches of business intelligence to data and text mining, the book guides readers through the process of extracting valuable knowledge from the varieties of data currently being generated in the brick and mortar and Internet environments. It considers the broad spectrum of analytics approaches for decision making, including dashboards, OLAP cubes, data mining, and text mining.

Handbook of Research on Advanced Data Mining Techniques and Applications for Business Intelligence

Handbook of Research on Advanced Data Mining Techniques and Applications for Business Intelligence
Author: Trivedi, Shrawan Kumar
Publisher: IGI Global
Total Pages: 465
Release: 2017-02-14
Genre: Computers
ISBN: 1522520325

The development of business intelligence has enhanced the visualization of data to inform and facilitate business management and strategizing. By implementing effective data-driven techniques, this allows for advance reporting tools to cater to company-specific issues and challenges. The Handbook of Research on Advanced Data Mining Techniques and Applications for Business Intelligence is a key resource on the latest advancements in business applications and the use of mining software solutions to achieve optimal decision-making and risk management results. Highlighting innovative studies on data warehousing, business activity monitoring, and text mining, this publication is an ideal reference source for research scholars, management faculty, and practitioners.

Integration Challenges for Analytics, Business Intelligence, and Data Mining

Integration Challenges for Analytics, Business Intelligence, and Data Mining
Author: Azevedo, Ana
Publisher: IGI Global
Total Pages: 250
Release: 2020-12-11
Genre: Computers
ISBN: 1799857832

As technology continues to advance, it is critical for businesses to implement systems that can support the transformation of data into information that is crucial for the success of the company. Without the integration of data (both structured and unstructured) mining in business intelligence systems, invaluable knowledge is lost. However, there are currently many different models and approaches that must be explored to determine the best method of integration. Integration Challenges for Analytics, Business Intelligence, and Data Mining is a relevant academic book that provides empirical research findings on increasing the understanding of using data mining in the context of business intelligence and analytics systems. Covering topics that include big data, artificial intelligence, and decision making, this book is an ideal reference source for professionals working in the areas of data mining, business intelligence, and analytics; data scientists; IT specialists; managers; researchers; academicians; practitioners; and graduate students.

Big Data in Practice

Big Data in Practice
Author: Bernard Marr
Publisher: John Wiley & Sons
Total Pages: 320
Release: 2016-03-22
Genre: Business & Economics
ISBN: 1119231396

The best-selling author of Big Data is back, this time with a unique and in-depth insight into how specific companies use big data. Big data is on the tip of everyone's tongue. Everyone understands its power and importance, but many fail to grasp the actionable steps and resources required to utilise it effectively. This book fills the knowledge gap by showing how major companies are using big data every day, from an up-close, on-the-ground perspective. From technology, media and retail, to sport teams, government agencies and financial institutions, learn the actual strategies and processes being used to learn about customers, improve manufacturing, spur innovation, improve safety and so much more. Organised for easy dip-in navigation, each chapter follows the same structure to give you the information you need quickly. For each company profiled, learn what data was used, what problem it solved and the processes put it place to make it practical, as well as the technical details, challenges and lessons learned from each unique scenario. Learn how predictive analytics helps Amazon, Target, John Deere and Apple understand their customers Discover how big data is behind the success of Walmart, LinkedIn, Microsoft and more Learn how big data is changing medicine, law enforcement, hospitality, fashion, science and banking Develop your own big data strategy by accessing additional reading materials at the end of each chapter

Data Mining for Business Analytics

Data Mining for Business Analytics
Author: Galit Shmueli
Publisher: John Wiley & Sons
Total Pages: 608
Release: 2019-10-14
Genre: Mathematics
ISBN: 111954985X

Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

Big Data and Global Trade Law

Big Data and Global Trade Law
Author: Mira Burri
Publisher: Cambridge University Press
Total Pages: 407
Release: 2021-07-29
Genre: Business & Economics
ISBN: 110884359X

An exploration of the current state of global trade law in the era of Big Data and AI. This title is also available as Open Access on Cambridge Core.