Vibration of Periodic Structures

Vibration of Periodic Structures
Author: Gautam SenGupta
Publisher: Elsevier
Total Pages: 268
Release: 2023-10-27
Genre: Technology & Engineering
ISBN: 0323990231

Vibration of Periodic Structures introduces the fundamentals of periodic structure theory by considering the simplest model – wave propagation in an infinitely long periodic spring-mass system. It then shows how the knowledge of the stop and pass bands can be utilized to find the natural frequency distribution in a finite periodic structure. The basic concepts are further extended to wave propagation in infinitely long periodically supported beams and plates; distribution of natural frequencies of a similar structure of finite length; vibration of skin-stringer structures; and structuralacoustic properties of a section of an aircraft fuselage, based on a combination of the finite element method and the periodic structure theory, in a highly cost-effective manner.This book is a valuable resource of information for practicing engineers in various industries, e.g., civil, mechanical, or aerospace engineering, dealing with vibration of structures with periodic properties, including prediction of supersonic flutter characteristics of aerospace structures. It will also prove to be a beneficial reference for researchers involved with wave propagation in metamaterials and phononic devices."Readers who have wanted a clear and connected account of vibration of periodic structures will find this treatment accessible and stimulating and will want to add this volume to their personal or institutional library. – Prof. Earl Dowell, Duke University, Durham, NC, USA - Shows how the periodic structure theory can be combined with the finite element method to model a section of an airplane fuselage to study its structural-acoustic characteristics - Features developing methods for predicting the dynamics of periodic structures in a cost-effective manner - Guides the reader to predict and reduce response of periodically stiffened structures to random excitations

Probabilistic and Convex Modelling of Acoustically Excited Structures

Probabilistic and Convex Modelling of Acoustically Excited Structures
Author: I. Elishakoff
Publisher: Elsevier
Total Pages: 305
Release: 2013-10-22
Genre: Mathematics
ISBN: 1483290352

This book summarises the analytical techniques for predicting the response of linear structures to noise excitations generated by large propulsion power plants. Emphasis is placed on beams and plates of both single-span and multi-span configurations, common in engineering structural systems. Since the natural frequencies and the associated normal modes play a central role in the random vibration analysis of a continuous dynamical system, rather detailed discussions are devoted to their determination. Material covered in the first chapter provides a useful reference for the subsequent discussion of multi-span structures. Also included in this volume is a hybrid probabilistic and convex-uncertainty modeling approach in which the upper and lower bounds of the cross-spectral densities of the acoustic excitation are obtained on the basis of measured data. The random vibration of a structure is treated, for the first time, as an "anti-optimization" problem of finding the least favourable value of the mean-square response.

Wave Propagation Approach for Structural Vibration

Wave Propagation Approach for Structural Vibration
Author: Chongjian Wu
Publisher: Springer Nature
Total Pages: 288
Release: 2020-10-28
Genre: Technology & Engineering
ISBN: 9811572372

This book is intended for researchers, graduate students and engineers in the fields of structure-borne sound, structural dynamics, and noise and vibration control. Based on vibration differential equations, it presents equations derived from the exponential function in the time domain, providing a unified framework for structural vibration analysis, which makes it more regular and normalized. This wave propagation approach (WPA) divides structures at “discontinuity points,” and the waves show characteristics of propagation, reflection, attenuation, and waveform conversion. In each segment of the system between two “discontinuity points,” the governing equation and constraint are expressed accurately, allowing the dynamic properties of complex systems to be precisely obtained. Starting with basic structures such as beams and plates, the book then discusses theoretical research on complicated and hybrid dynamical systems, and demonstrates that structural vibration can be analyzed from the perspective of elastic waves by applying WPA.