Dynamic Factor Models Bayesian Averaging Of Classical Estimates In Forecasting Macroeconomic Indicators With Application Of Survey Data
Download Dynamic Factor Models Bayesian Averaging Of Classical Estimates In Forecasting Macroeconomic Indicators With Application Of Survey Data full books in PDF, epub, and Kindle. Read online free Dynamic Factor Models Bayesian Averaging Of Classical Estimates In Forecasting Macroeconomic Indicators With Application Of Survey Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Michael P. Clements |
Publisher | : OUP USA |
Total Pages | : 732 |
Release | : 2011-07-08 |
Genre | : Business & Economics |
ISBN | : 0195398645 |
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
Author | : Peter Fuleky |
Publisher | : Springer Nature |
Total Pages | : 716 |
Release | : 2019-11-28 |
Genre | : Business & Economics |
ISBN | : 3030311503 |
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
Author | : John Geweke |
Publisher | : Oxford University Press |
Total Pages | : 576 |
Release | : 2011-09-29 |
Genre | : Business & Economics |
ISBN | : 0191618268 |
Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.
Author | : Avi Goldfarb |
Publisher | : University of Chicago Press |
Total Pages | : 510 |
Release | : 2015-05-08 |
Genre | : Business & Economics |
ISBN | : 022620684X |
There is a small and growing literature that explores the impact of digitization in a variety of contexts, but its economic consequences, surprisingly, remain poorly understood. This volume aims to set the agenda for research in the economics of digitization, with each chapter identifying a promising area of research. "Economics of Digitization "identifies urgent topics with research already underway that warrant further exploration from economists. In addition to the growing importance of digitization itself, digital technologies have some features that suggest that many well-studied economic models may not apply and, indeed, so many aspects of the digital economy throw normal economics in a loop. "Economics of Digitization" will be one of the first to focus on the economic implications of digitization and to bring together leading scholars in the economics of digitization to explore emerging research.
Author | : Jörg Breitung |
Publisher | : |
Total Pages | : 29 |
Release | : 2005 |
Genre | : |
ISBN | : 9783865580979 |
Author | : Edward P. Herbst |
Publisher | : Princeton University Press |
Total Pages | : 295 |
Release | : 2015-12-29 |
Genre | : Business & Economics |
ISBN | : 0691161089 |
Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations. Bayesian Estimation of DSGE Models is essential reading for graduate students, academic researchers, and practitioners at policy institutions.
Author | : Graham Elliott |
Publisher | : Princeton University Press |
Total Pages | : 567 |
Release | : 2016-04-05 |
Genre | : Business & Economics |
ISBN | : 1400880890 |
A comprehensive and integrated approach to economic forecasting problems Economic forecasting involves choosing simple yet robust models to best approximate highly complex and evolving data-generating processes. This poses unique challenges for researchers in a host of practical forecasting situations, from forecasting budget deficits and assessing financial risk to predicting inflation and stock market returns. Economic Forecasting presents a comprehensive, unified approach to assessing the costs and benefits of different methods currently available to forecasters. This text approaches forecasting problems from the perspective of decision theory and estimation, and demonstrates the profound implications of this approach for how we understand variable selection, estimation, and combination methods for forecasting models, and how we evaluate the resulting forecasts. Both Bayesian and non-Bayesian methods are covered in depth, as are a range of cutting-edge techniques for producing point, interval, and density forecasts. The book features detailed presentations and empirical examples of a range of forecasting methods and shows how to generate forecasts in the presence of large-dimensional sets of predictor variables. The authors pay special attention to how estimation error, model uncertainty, and model instability affect forecasting performance. Presents a comprehensive and integrated approach to assessing the strengths and weaknesses of different forecasting methods Approaches forecasting from a decision theoretic and estimation perspective Covers Bayesian modeling, including methods for generating density forecasts Discusses model selection methods as well as forecast combinations Covers a large range of nonlinear prediction models, including regime switching models, threshold autoregressions, and models with time-varying volatility Features numerous empirical examples Examines the latest advances in forecast evaluation Essential for practitioners and students alike
Author | : |
Publisher | : |
Total Pages | : 62 |
Release | : 2008 |
Genre | : Economic development |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 728 |
Release | : 1995 |
Genre | : Statistics |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 1852 |
Release | : 2005 |
Genre | : Mathematics |
ISBN | : |