Domain Decomposition Methods - Algorithms and Theory

Domain Decomposition Methods - Algorithms and Theory
Author: Andrea Toselli
Publisher: Springer Science & Business Media
Total Pages: 454
Release: 2006-06-20
Genre: Mathematics
ISBN: 3540266623

This book offers a comprehensive presentation of some of the most successful and popular domain decomposition preconditioners for finite and spectral element approximations of partial differential equations. It places strong emphasis on both algorithmic and mathematical aspects. It covers in detail important methods such as FETI and balancing Neumann-Neumann methods and algorithms for spectral element methods.

Domain Decomposition Methods in Science and Engineering

Domain Decomposition Methods in Science and Engineering
Author: Ralf Kornhuber
Publisher: Springer Science & Business Media
Total Pages: 686
Release: 2006-03-30
Genre: Mathematics
ISBN: 3540268251

Domain decomposition is an active, interdisciplinary research area that is devoted to the development, analysis and implementation of coupling and decoupling strategies in mathematics, computational science, engineering and industry. A series of international conferences starting in 1987 set the stage for the presentation of many meanwhile classical results on substructuring, block iterative methods, parallel and distributed high performance computing etc. This volume contains a selection from the papers presented at the 15th International Domain Decomposition Conference held in Berlin, Germany, July 17-25, 2003 by the world's leading experts in the field. Its special focus has been on numerical analysis, computational issues,complex heterogeneous problems, industrial problems, and software development.

Domain Decomposition Methods in Science and Engineering XIX

Domain Decomposition Methods in Science and Engineering XIX
Author: Yunqing Huang
Publisher: Springer Science & Business Media
Total Pages: 484
Release: 2010-10-27
Genre: Mathematics
ISBN: 3642113044

These are the proceedings of the 19th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linear or nonlinear systems of algebraic equations that arise in various problems in mathematics, computational science, engineering and industry. They are designed for massively parallel computers and take the memory hierarchy of such systems into account. This is essential for approaching peak floating point performance. There is an increasingly well-developed theory which is having a direct impact on the development and improvement of these algorithms.

Domain Decomposition Methods in Science and Engineering XVI

Domain Decomposition Methods in Science and Engineering XVI
Author: Olof Widlund
Publisher: Springer Science & Business Media
Total Pages: 783
Release: 2007-07-30
Genre: Technology & Engineering
ISBN: 3540344691

Domain decomposition is an active research area concerned with the development, analysis, and implementation of coupling and decoupling strategies in mathematical and computational models of natural and engineered systems. The present volume sets forth new contributions in areas of numerical analysis, computer science, scientific and industrial applications, and software development.

Domain Decomposition Methods 10

Domain Decomposition Methods 10
Author: Jan Mandel
Publisher: American Mathematical Soc.
Total Pages: 569
Release: 1998
Genre: Mathematics
ISBN: 0821809881

This volume contains the proceedings of the Tenth International Conference on Domain Decomposition Methods, which focused on the latest developments in realistic applications in structural mechanics, structural dynamics, computational fluid dynamics, and heat transfer. The proceedings of these conferences have become standard references in the field and contain seminal papers as well as the latest theoretical results and reports on practical applications.

An Introduction to Domain Decomposition Methods

An Introduction to Domain Decomposition Methods
Author: Victorita Dolean
Publisher: SIAM
Total Pages: 242
Release: 2015-12-08
Genre: Science
ISBN: 1611974054

The purpose of this book is to offer an overview of the most popular domain decomposition methods for partial differential equations (PDEs). These methods are widely used for numerical simulations in solid mechanics, electromagnetism, flow in porous media, etc., on parallel machines from tens to hundreds of thousands of cores. The appealing feature of domain decomposition methods is that, contrary to direct methods, they are naturally parallel. The authors focus on parallel linear solvers. The authors present all popular algorithms, both at the PDE level and at the discrete level in terms of matrices, along with systematic scripts for sequential implementation in a free open-source finite element package as well as some parallel scripts. Also included is a new coarse space construction (two-level method) that adapts to highly heterogeneous problems.?

Domain Decomposition Methods in Science and Engineering

Domain Decomposition Methods in Science and Engineering
Author: Alfio Quarteroni
Publisher: American Mathematical Soc.
Total Pages: 510
Release: 1994
Genre: Mathematics
ISBN: 0821851586

This book contains the proceedings of the Sixth International Conference on Domain Decomposition, held in June 1992 in Como, Italy. Much of the work in this field focuses on developing numerical methods for large algebraic systems.

Elliptic Marching Methods and Domain Decomposition

Elliptic Marching Methods and Domain Decomposition
Author: Patrick J. Roache
Publisher: CRC Press
Total Pages: 212
Release: 1995-06-29
Genre: Mathematics
ISBN: 9780849373787

One of the first things a student of partial differential equations learns is that it is impossible to solve elliptic equations by spatial marching. This new book describes how to do exactly that, providing a powerful tool for solving problems in fluid dynamics, heat transfer, electrostatics, and other fields characterized by discretized partial differential equations. Elliptic Marching Methods and Domain Decomposition demonstrates how to handle numerical instabilities (i.e., limitations on the size of the problem) that appear when one tries to solve these discretized equations with marching methods. The book also shows how marching methods can be superior to multigrid and pre-conditioned conjugate gradient (PCG) methods, particularly when used in the context of multiprocessor parallel computers. Techniques for using domain decomposition together with marching methods are detailed, clearly illustrating the benefits of these techniques for applications in engineering, applied mathematics, and the physical sciences.