Distributed Data Fusion for Network-Centric Operations

Distributed Data Fusion for Network-Centric Operations
Author: David Hall
Publisher: CRC Press
Total Pages: 501
Release: 2017-12-19
Genre: Computers
ISBN: 1351833057

With the recent proliferation of service-oriented architectures (SOA), cloud computing technologies, and distributed-interconnected systems, distributed fusion is taking on a larger role in a variety of applications—from environmental monitoring and crisis management to intelligent buildings and defense. Drawing on the work of leading experts around the world, Distributed Data Fusion for Network-Centric Operations examines the state of the art of data fusion in a distributed sensing, communications, and computing environment. Get Insight into Designing and Implementing Data Fusion in a Distributed Network Addressing the entirety of information fusion, the contributors cover everything from signal and image processing, through estimation, to situation awareness. In particular, the work offers a timely look at the issues and solutions involving fusion within a distributed network enterprise. These include critical design problems, such as how to maintain a pedigree of agents or nodes that receive information, provide their contribution to the dataset, and pass to other network components. The book also tackles dynamic data sharing within a network-centric enterprise, distributed fusion effects on state estimation, graph-theoretic methods to optimize fusion performance, human engineering factors, and computer ontologies for higher levels of situation assessment. A comprehensive introduction to this emerging field and its challenges, the book explores how data fusion can be used within grid, distributed, and cloud computing architectures. Bringing together both theoretical and applied research perspectives, this is a valuable reference for fusion researchers and practitioners. It offers guidance and insight for those working on the complex issues of designing and implementing distributed, decentralized information fusion.

Distributed Data Fusion for Network-centric Operations

Distributed Data Fusion for Network-centric Operations
Author: David Lee Hall
Publisher:
Total Pages: 478
Release: 2013
Genre: Electronic books
ISBN: 9781351824361

"Foreword I am very pleased to provide a foreword for this timely work on distributed fusion. I have been involved in fusion research for the last 15 years, focused on transforming data to support more effective decision making. During that time, I have relied heavily on the advice of the editors of this book and many of the chapter authors to help set the directions for Army-focused basic and applied information fusion initiatives. I first met the editors about 12 years ago at an Army-sponsored fusion workshop where it was clear that the issues of increased sensors and data sources, along with the introduction of web-based information architectures, had finally overwhelmed the analysis community. Most of the discussions were focused on the problems. But Dave Hall and Jim Llinas began addressing the solutions. They identified relevant terms and definitions, outlined algorithms for specific fusion tasks, addressed many of the evolving architectural issues, pinpointed key technical barriers, and proposed directions for future research. They clearly were long-time experts in the field; but, more importantly, they were visionary in their recognition of rapidly evolving trends in information management and the impact those trends would have on the field of data fusion. It is, therefore, not at all surprising that this, their latest book (along with colleagues), would be focused on distributed fusion. While there are numerous texts and handbooks on data fusion in general (many written or edited by the editors and authors of this book), there are two major trends that motivate the need for this work. First, the very concept of defense operations has dramatically changed. Modern military missions include, for example, coalitionbased counterinsurgency, counternarcotics, "--

Context-Enhanced Information Fusion

Context-Enhanced Information Fusion
Author: Lauro Snidaro
Publisher: Springer
Total Pages: 696
Release: 2016-05-25
Genre: Computers
ISBN: 3319289713

This text reviews the fundamental theory and latest methods for including contextual information in fusion process design and implementation. Chapters are contributed by the foremost international experts, spanning numerous developments and applications. The book highlights high- and low-level information fusion problems, performance evaluation under highly demanding conditions, and design principles. A particular focus is placed on approaches that integrate research from different communities, emphasizing the benefit of combining different techniques to overcome the limitations of a single perspective. Features: introduces the terminology and core elements in information fusion and context; presents key themes for context-enhanced information fusion; discusses design issues in developing context-aware fusion systems; provides mathematical grounds for modeling the contextual influences in representative fusion problems; describes the fusion of hard and soft data; reviews a diverse range of applications.

Advances in Practical Applications of Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection

Advances in Practical Applications of Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection
Author: Yves Demazeau
Publisher: Springer
Total Pages: 336
Release: 2015-05-20
Genre: Computers
ISBN: 3319189441

This book constitutes the refereed proceedings of the 13th International Conference on Practical Applications of Agents and Multi-Agent Systems, PAAMS 2015, held in Salamanca, Spain, in June 2015. The 10 revised full papers and 9 short papers were carefully reviewed and selected from 48 submissions are presented together with 17 demonstrations. The articles report on the application and validation of agent-based models, methods and technologies in a number of key application areas, including: agents and the energy grid, agents and the traffic grid, affective computing and agent development, ambient and contextual agents, social simulation and social networks and other agent-based applications.

Decentralized Estimation Using Conservative Information Extraction

Decentralized Estimation Using Conservative Information Extraction
Author: Robin Forsling
Publisher: Linköping University Electronic Press
Total Pages: 110
Release: 2020-12-17
Genre:
ISBN: 9179297242

Sensor networks consist of sensors (e.g., radar and cameras) and processing units (e.g., estimators), where in the former information extraction occurs and in the latter estimates are formed. In decentralized estimation information extracted by sensors has been pre-processed at an intermediate processing unit prior to arriving at an estimator. Pre-processing of information allows for the complexity of large systems and systems-of-systems to be significantly reduced, and also makes the sensor network robust and flexible. One of the main disadvantages of pre-processing information is that information becomes correlated. These correlations, if not handled carefully, potentially lead to underestimated uncertainties about the calculated estimates. In conservative estimation the unknown correlations are handled by ensuring that the uncertainty about an estimate is not underestimated. If this is ensured the estimate is said to be conservative. Neglecting correlations means information is double counted which in worst case implies diverging estimates with fatal consequences. While ensuring conservative estimates is the main goal, it is desirable for a conservative estimator, as for any estimator, to provide an error covariance which is as small as possible. Application areas where conservative estimation is relevant are setups where multiple agents cooperate to accomplish a common objective, e.g., target tracking, surveillance and air policing. The first part of this thesis deals with theoretical matters where the conservative linear unbiased estimation problem is formalized. This part proposes an extension of classical linear estimation theory to the conservative estimation problem. The conservative linear unbiased estimator (CLUE) is suggested as a robust and practical alternative for estimation problems where the correlations are unknown. Optimality criteria for the CLUE are provided and further investigated. It is shown that finding an optimal CLUE is more complicated than finding an optimal linear unbiased estimator in the classical version of the problem. To simplify the problem, a CLUE that is optimal under certain restrictions will also be investigated. The latter is named restricted best CLUE. An important result is a theorem that gives a closed form solution to a restricted best CLUE. Furthermore, several conservative estimation methods are described followed by an analysis of their properties. The methods are shown to be conservative and optimal under different assumptions about the underlying correlations. The second part of the thesis focuses on practical aspects of the conservative approach to decentralized estimation in configurations where the communication channel is constrained. The diagonal covariance approximation is proposed as a data reduction technique that complies with the communication constraints and if handled correctly can be shown to preserve conservative estimates. Several information selection methods are derived that can reduce the amount of data being transmitted in the communication channel. Using the information selection methods it is possible to decide what information other actors of the sensor network find useful.

Advances in Statistical Multisource-Multitarget Information Fusion

Advances in Statistical Multisource-Multitarget Information Fusion
Author: Ronald P.S. Mahler
Publisher: Artech House
Total Pages: 1167
Release: 2014-08-01
Genre: Technology & Engineering
ISBN: 1608077985

This is the sequel to the 2007 Artech House bestselling title, Statistical Multisource-Multitarget Information Fusion. That earlier book was a comprehensive resource for an in-depth understanding of finite-set statistics (FISST), a unified, systematic, and Bayesian approach to information fusion. The cardinalized probability hypothesis density (CPHD) filter, which was first systematically described in the earlier book, has since become a standard multitarget detection and tracking technique, especially in research and development. Since 2007, FISST has inspired a considerable amount of research, conducted in more than a dozen nations, and reported in nearly a thousand publications. This sequel addresses the most intriguing practical and theoretical advances in FISST, for the first time aggregating and systematizing them into a coherent, integrated, and deep-dive picture. Special emphasis is given to computationally fast exact closed-form implementation approaches. The book also includes the first complete and systematic description of RFS-based sensor/platform management and situation assessment.

Handbook of Multisensor Data Fusion

Handbook of Multisensor Data Fusion
Author: Martin Liggins II
Publisher: CRC Press
Total Pages: 872
Release: 2017-01-06
Genre: Technology & Engineering
ISBN: 1420053094

In the years since the bestselling first edition, fusion research and applications have adapted to service-oriented architectures and pushed the boundaries of situational modeling in human behavior, expanding into fields such as chemical and biological sensing, crisis management, and intelligent buildings. Handbook of Multisensor Data Fusion: Theory and Practice, Second Edition represents the most current concepts and theory as information fusion expands into the realm of network-centric architectures. It reflects new developments in distributed and detection fusion, situation and impact awareness in complex applications, and human cognitive concepts. With contributions from the world’s leading fusion experts, this second edition expands to 31 chapters covering the fundamental theory and cutting-edge developments that are driving this field. New to the Second Edition— · Applications in electromagnetic systems and chemical and biological sensors · Army command and combat identification techniques · Techniques for automated reasoning · Advances in Kalman filtering · Fusion in a network centric environment · Service-oriented architecture concepts · Intelligent agents for improved decision making · Commercial off-the-shelf (COTS) software tools From basic information to state-of-the-art theories, this second edition continues to be a unique, comprehensive, and up-to-date resource for data fusion systems designers.

Cognitive Electronic Warfare: An Artificial Intelligence Approach

Cognitive Electronic Warfare: An Artificial Intelligence Approach
Author: Karen Haigh
Publisher: Artech House
Total Pages: 288
Release: 2021-07-31
Genre: Technology & Engineering
ISBN: 1630818127

This comprehensive book gives an overview of how cognitive systems and artificial intelligence (AI) can be used in electronic warfare (EW). Readers will learn how EW systems respond more quickly and effectively to battlefield conditions where sophisticated radars and spectrum congestion put a high priority on EW systems that can characterize and classify novel waveforms, discern intent, and devise and test countermeasures. Specific techniques are covered for optimizing a cognitive EW system as well as evaluating its ability to learn new information in real time. The book presents AI for electronic support (ES), including characterization, classification, patterns of life, and intent recognition. Optimization techniques, including temporal tradeoffs and distributed optimization challenges are also discussed. The issues concerning real-time in-mission machine learning and suggests some approaches to address this important challenge are presented and described. The book covers electronic battle management, data management, and knowledge sharing. Evaluation approaches, including how to show that a machine learning system can learn how to handle novel environments, are also discussed. Written by experts with first-hand experience in AI-based EW, this is the first book on in-mission real-time learning and optimization.

Information Quality in Information Fusion and Decision Making

Information Quality in Information Fusion and Decision Making
Author: Éloi Bossé
Publisher: Springer
Total Pages: 619
Release: 2019-04-02
Genre: Computers
ISBN: 303003643X

This book presents a contemporary view of the role of information quality in information fusion and decision making, and provides a formal foundation and the implementation strategies required for dealing with insufficient information quality in building fusion systems for decision making. Information fusion is the process of gathering, processing, and combining large amounts of information from multiple and diverse sources, including physical sensors to human intelligence reports and social media. That data and information may be unreliable, of low fidelity, insufficient resolution, contradictory, fake and/or redundant. Sources may provide unverified reports obtained from other sources resulting in correlations and biases. The success of the fusion processing depends on how well knowledge produced by the processing chain represents reality, which in turn depends on how adequate data are, how good and adequate are the models used, and how accurate, appropriate or applicable prior and contextual knowledge is. By offering contributions by leading experts, this book provides an unparalleled understanding of the problem of information quality in information fusion and decision-making for researchers and professionals in the field.

Multisensor Data Fusion

Multisensor Data Fusion
Author: David Hall
Publisher: CRC Press
Total Pages: 564
Release: 2001-06-20
Genre: Technology & Engineering
ISBN: 1420038540

The emerging technology of multisensor data fusion has a wide range of applications, both in Department of Defense (DoD) areas and in the civilian arena. The techniques of multisensor data fusion draw from an equally broad range of disciplines, including artificial intelligence, pattern recognition, and statistical estimation. With the rapid evolut