This thesis is a theoretical exploration of properties of multilayered and multicomponent nitride alloys, in particular their mixing thermodynamics and elastic behaviors. Systematic investigation of properties of a large class of materials, such as the multicomponent nitride solid solutions, is in line with the modern approach of high-throughput search of novel materials. In this thesis we benchmark and utilize simple but efficient methodological frameworks in predicting mixing thermodynamics, Young’s moduli distribution of multilayer alloys and the linear thermal expansion of quaternary nitride solid solutions. We demonstrate by accurate ab-initio calculations that Ti1−xAlxN solid solution is stabilized by interfacial effects if it is coherently sandwiched between TiN layers along (001). For TiN/AlN and ZrN/AlN multilayers we show higher thermodynamic stability with semicoherent interfaces than with isostructural coherent ones. Accurate 0 Kelvin elastic constants of cubic TixXyAl1−x−yN (X=Zr, Hf, Nb, V, Ta) solid solutions and their multilayers are derived and an analytic comparison of strengths and ductility are presented to reveal the potential of these materials in hard coating applications. The Young’s moduli variation of the bulk materials has provided a reliable descriptor to screen the Young’s moduli of coherent multilayers. The Debye model is used to reveal the high-temperature thermodynamics and spinodal decomposition of TixNbyAl1−x−yN. We show that though the effect of vibration is large on the mixing Gibbs free energy the local spinoal decomposition tendencies are not altered. A quasi-harmonic Debye model is benchmarked against results of molecular dynamics simulations in predicting the thermal expansion coefficients of TixXyAl1−x−yN (X=Zr, Hf, Nb, V, Ta). Denna avhandling är en teoretisk undersökning av egenskaperna hos multilager och multikomponentlegeringar av nitrider, särskilt deras blandningstermodynamik och elastiska egenskaper. Systematiska undersökningar av egenskaperna hos en stor materialfamilj, såsom fasta lösningar av multikomponentnitrider, ligger i linje med den moderna angreppsvinkeln av massundersökningar i sökandet efter nya material. I denna avhandling utvärderar och använder vi enkla men effektiva metodologiska ramverk för att förutsäga blandningstermodynamik, fördelning av Young’s moduli multilager och den linjära termiska expansionen i kvaternära fasta lösningar av nitrider. Vi visar med precisa ab-initio-beräkningar att en fast lösning av Ti1−xAlxN stabiliseras av gränssnittseffekter om den placeras koherent mellan TiN-skikt längs med (001). För multilager av TiN/AlN och ZrN/AlN påvisar vi högre termodynamisk stabilitet med semikoherenta gränsskikt än med isostrukturella koherenta. Precisa elastiska konstanter vid 0 K för kubiska fasta lösningar av TixXyAl1−x−yN (X=Zr, Hf, Nb, V, Ta) och deras multilager beräknas och en analytisk jämförelse av deras hållfasthet och duktilitet presenteras för att visa dessa materials potential som hårda beläggningar. Variationen av Young’s moduli materialen i bulk har gett en pålitlig deskriptor för att undersöka Young’s moduli koherenta multilager. Debye-modellen används för att undersöka hög-temperatur-termodynamiken och spinodalt sönderfall hos TixNbyAl1−x−yN. Vi visar att trots att vibrationers effekt på Gibbs fria energi för blandning är stor påverkas inte de lokala tendenserna för spinodalt sönderfall. En kvasiharmonisk Debye-modell jämförs med resultat från molekyldynamiksimuleringar för att förutsäga utvidgningskoefficienter för TixXyAl1−x−yN (X=Zr, Hf, Nb, V, Ta). Diese Arbeit ist eine theoretische Untersuchung der Eigenschaften von mehrschichtigen und mehrkomponentigen Nitridlegierungen, insbesondere deren Mischungs- Thermodynamik und elastischen Verhalten. Eine systematische Untersuchung von Eigenschaften einer großen Klasse von Materialien, wie zum Beispiel fester Lösungen von Mehrkomponenten-Nitriden, ist im Einklang mit dem zeitgenössischen Hochdurchsatzverfahren für die Suche nach neuen Materialien. In dieser Arbeit benchmarken und nutzen wir einfache, aber effiziente methodische Frameworks zur Vorhersage der Mischungs-Thermodynamik, der Verteilung des Elastizitätsmoduls von Mehrschichtlegierungen und der linearen thermischen Ausdehnung von festen, quaternären Nitrid-Lösungen. Wir zeigen durch genaue Ab-initio-Berechnungen, dass Ti1−xAlxN Mischkristalle durch Grenzflächenwirkungen stabilisiert werden, wenn sie kohärent zwischen TiN Schichten entlang (001) sandwichartig angeordnet sind. Die genauen elastischen Konstanten von kubischen TixXyAl1−x−yN (X = Zr, Hf, Nb, V, Ta) Mischkristallen und deren Mehrfachschichten bei 0 Kelvin werden abgeleitet und ein analytischer Vergleich der Festigkeit und Duktilität zeigt das Potential dieser Materialien in Hartbeschichtungsanwendungen. Das Debye-Modell wird verwendet, um die Hochtemperatur-Thermodynamik und die spinodale Entmischung von TixNbyAl1−x−yN aufzudecken. Wir zeigen, dass sich die lokale Tendenzen zur spinodalen Entmischung nicht ändern, obwohl die Wirkung von Vibrationen auf die Gibbs-Energie großist. Ein quasi-harmonisches Debye-Modell wird gegen die Ergebnisse von Moleküldynamik-Simulationen gebenchmarkt, um die thermische Ausdehnungskoeffizienten von TixXyAl1−x−yN (X=Zr, Hf, Nb, V, Ta) vorherzusagen.