Markov Chains

Markov Chains
Author: Kai Lai Chung
Publisher: Springer Science & Business Media
Total Pages: 312
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642620159

From the reviews: J. Neveu, 1962 in Zentralblatt fr Mathematik, 92. Band Heft 2, p. 343: "Ce livre crit par l'un des plus minents spcialistes en la matire, est un expos trs dtaill de la thorie des processus de Markov dfinis sur un espace dnombrable d'tats et homognes dans le temps (chaines stationnaires de Markov)." N. Jain, 2008 in Selected Works of Kai Lai Chung, edited by Farid AitSahlia (University of Florida, USA), Elton Hsu (Northwestern University, USA), & Ruth Williams (University of California-San Diego, USA), Chapter 1, p. 15: "This monograph deals with countable state Markov chains in both discrete time (Part I) and continuous time (Part II). ... Much of Kai Lai's fundamental work in the field is included in this monograph. Here, for the first time, Kai Lai gave a systematic exposition of the subject which includes classification of states, ratio ergodic theorems, and limit theorems for functionals of the chain."

Markov Chains with Stationary Transition Probabilities

Markov Chains with Stationary Transition Probabilities
Author: Kai Lai Chung
Publisher: Springer
Total Pages: 287
Release: 2013-03-08
Genre: Mathematics
ISBN: 3642496865

The theory of Markov chains, although a special case of Markov processes, is here developed for its own sake and presented on its own merits. In general, the hypothesis of a denumerable state space, which is the defining hypothesis of what we call a "chain" here, generates more clear-cut questions and demands more precise and definitive an swers. For example, the principal limit theorem (§§ 1. 6, II. 10), still the object of research for general Markov processes, is here in its neat final form; and the strong Markov property (§ 11. 9) is here always applicable. While probability theory has advanced far enough that a degree of sophistication is needed even in the limited context of this book, it is still possible here to keep the proportion of definitions to theorems relatively low. . From the standpoint of the general theory of stochastic processes, a continuous parameter Markov chain appears to be the first essentially discontinuous process that has been studied in some detail. It is common that the sample functions of such a chain have discontinuities worse than jumps, and these baser discontinuities play a central role in the theory, of which the mystery remains to be completely unraveled. In this connection the basic concepts of separability and measurability, which are usually applied only at an early stage of the discussion to establish a certain smoothness of the sample functions, are here applied constantly as indispensable tools.

Sensitivity Analysis: Matrix Methods in Demography and Ecology

Sensitivity Analysis: Matrix Methods in Demography and Ecology
Author: Hal Caswell
Publisher: Springer
Total Pages: 308
Release: 2019-04-02
Genre: Social Science
ISBN: 3030105342

This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.

Essentials of Stochastic Processes

Essentials of Stochastic Processes
Author: Richard Durrett
Publisher: Springer
Total Pages: 282
Release: 2016-11-07
Genre: Mathematics
ISBN: 3319456148

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

Basics of Applied Stochastic Processes

Basics of Applied Stochastic Processes
Author: Richard Serfozo
Publisher: Springer Science & Business Media
Total Pages: 452
Release: 2009-01-24
Genre: Mathematics
ISBN: 3540893326

Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.

Continuous-Time Markov Chains

Continuous-Time Markov Chains
Author: William J. Anderson
Publisher: Springer Science & Business Media
Total Pages: 367
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461230381

Continuous time parameter Markov chains have been useful for modeling various random phenomena occurring in queueing theory, genetics, demography, epidemiology, and competing populations. This is the first book about those aspects of the theory of continuous time Markov chains which are useful in applications to such areas. It studies continuous time Markov chains through the transition function and corresponding q-matrix, rather than sample paths. An extensive discussion of birth and death processes, including the Stieltjes moment problem, and the Karlin-McGregor method of solution of the birth and death processes and multidimensional population processes is included, and there is an extensive bibliography. Virtually all of this material is appearing in book form for the first time.

Uncertainty in Engineering

Uncertainty in Engineering
Author: Louis J. M. Aslett
Publisher: Springer Nature
Total Pages: 148
Release: 2022
Genre:
ISBN: 3030836401

This open access book provides an introduction to uncertainty quantification in engineering. Starting with preliminaries on Bayesian statistics and Monte Carlo methods, followed by material on imprecise probabilities, it then focuses on reliability theory and simulation methods for complex systems. The final two chapters discuss various aspects of aerospace engineering, considering stochastic model updating from an imprecise Bayesian perspective, and uncertainty quantification for aerospace flight modelling. Written by experts in the subject, and based on lectures given at the Second Training School of the European Research and Training Network UTOPIAE (Uncertainty Treatment and Optimization in Aerospace Engineering), which took place at Durham University (United Kingdom) from 2 to 6 July 2018, the book offers an essential resource for students as well as scientists and practitioners.

Probability and Bayesian Modeling

Probability and Bayesian Modeling
Author: Jim Albert
Publisher: CRC Press
Total Pages: 553
Release: 2019-12-06
Genre: Mathematics
ISBN: 1351030132

Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling
Author: Howard M. Taylor
Publisher: Academic Press
Total Pages: 410
Release: 2014-05-10
Genre: Mathematics
ISBN: 1483269272

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Introduction to Stochastic Processes

Introduction to Stochastic Processes
Author: Paul G. Hoel
Publisher: Waveland Press
Total Pages: 212
Release: 1986-12-01
Genre: Mathematics
ISBN: 1478608994

An excellent introduction for computer scientists and electrical and electronics engineers who would like to have a good, basic understanding of stochastic processes! This clearly written book responds to the increasing interest in the study of systems that vary in time in a random manner. It presents an introductory account of some of the important topics in the theory of the mathematical models of such systems. The selected topics are conceptually interesting and have fruitful application in various branches of science and technology.