Topological Crystallography

Topological Crystallography
Author: Toshikazu Sunada
Publisher: Springer Science & Business Media
Total Pages: 236
Release: 2012-12-23
Genre: Mathematics
ISBN: 4431541772

Geometry in ancient Greece is said to have originated in the curiosity of mathematicians about the shapes of crystals, with that curiosity culminating in the classification of regular convex polyhedra addressed in the final volume of Euclid’s Elements. Since then, geometry has taken its own path and the study of crystals has not been a central theme in mathematics, with the exception of Kepler’s work on snowflakes. Only in the nineteenth century did mathematics begin to play a role in crystallography as group theory came to be applied to the morphology of crystals. This monograph follows the Greek tradition in seeking beautiful shapes such as regular convex polyhedra. The primary aim is to convey to the reader how algebraic topology is effectively used to explore the rich world of crystal structures. Graph theory, homology theory, and the theory of covering maps are employed to introduce the notion of the topological crystal which retains, in the abstract, all the information on the connectivity of atoms in the crystal. For that reason the title Topological Crystallography has been chosen. Topological crystals can be described as “living in the logical world, not in space,” leading to the question of how to place or realize them “canonically” in space. Proposed here is the notion of standard realizations of topological crystals in space, including as typical examples the crystal structures of diamond and lonsdaleite. A mathematical view of the standard realizations is also provided by relating them to asymptotic behaviors of random walks and harmonic maps. Furthermore, it can be seen that a discrete analogue of algebraic geometry is linked to the standard realizations. Applications of the discussions in this volume include not only a systematic enumeration of crystal structures, an area of considerable scientific interest for many years, but also the architectural design of lightweight rigid structures. The reader therefore can see the agreement of theory and practice.

Classical Topics in Discrete Geometry

Classical Topics in Discrete Geometry
Author: Károly Bezdek
Publisher: Springer Science & Business Media
Total Pages: 171
Release: 2010-06-23
Genre: Mathematics
ISBN: 1441906002

Geometry is a classical core part of mathematics which, with its birth, marked the beginning of the mathematical sciences. Thus, not surprisingly, geometry has played a key role in many important developments of mathematics in the past, as well as in present times. While focusing on modern mathematics, one has to emphasize the increasing role of discrete mathematics, or equivalently, the broad movement to establish discrete analogues of major components of mathematics. In this way, the works of a number of outstanding mathema- cians including H. S. M. Coxeter (Canada), C. A. Rogers (United Kingdom), and L. Fejes-T oth (Hungary) led to the new and fast developing eld called discrete geometry. One can brie y describe this branch of geometry as the study of discrete arrangements of geometric objects in Euclidean, as well as in non-Euclidean spaces. This, as a classical core part, also includes the theory of polytopes and tilings in addition to the theory of packing and covering. D- crete geometry is driven by problems often featuring a very clear visual and applied character. The solutions use a variety of methods of modern mat- matics, including convex and combinatorial geometry, coding theory, calculus of variations, di erential geometry, group theory, and topology, as well as geometric analysis and number theory.

Lectures on Discrete Geometry

Lectures on Discrete Geometry
Author: Jiri Matousek
Publisher: Springer Science & Business Media
Total Pages: 491
Release: 2013-12-01
Genre: Mathematics
ISBN: 1461300398

The main topics in this introductory text to discrete geometry include basics on convex sets, convex polytopes and hyperplane arrangements, combinatorial complexity of geometric configurations, intersection patterns and transversals of convex sets, geometric Ramsey-type results, and embeddings of finite metric spaces into normed spaces. In each area, the text explains several key results and methods.

Digital and Discrete Geometry

Digital and Discrete Geometry
Author: Li M. Chen
Publisher: Springer
Total Pages: 325
Release: 2014-12-12
Genre: Computers
ISBN: 3319120999

This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData. The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and advanced topics. Chapters especially focus on the applications of these methods to other types of geometry, algebraic topology, image processing, computer vision and computer graphics. Digital and Discrete Geometry: Theory and Algorithms targets researchers and professionals working in digital image processing analysis, medical imaging (such as CT and MRI) and informatics, computer graphics, computer vision, biometrics, and information theory. Advanced-level students in electrical engineering, mathematics, and computer science will also find this book useful as a secondary text book or reference. Praise for this book: This book does present a large collection of important concepts, of mathematical, geometrical, or algorithmical nature, that are frequently used in computer graphics and image processing. These concepts range from graphs through manifolds to homology. Of particular value are the sections dealing with discrete versions of classic continuous notions. The reader finds compact definitions and concise explanations that often appeal to intuition, avoiding finer, but then necessarily more complicated, arguments... As a first introduction, or as a reference for professionals working in computer graphics or image processing, this book should be of considerable value." - Prof. Dr. Rolf Klein, University of Bonn.

Discrete Geometric Analysis

Discrete Geometric Analysis
Author: Motoko Kotani
Publisher: American Mathematical Soc.
Total Pages: 274
Release: 2004
Genre: Mathematics
ISBN: 0821833510

Collects papers from the proceedings of the first symposium of the Japan Association for Mathematical Sciences. This book covers topics that center around problems of geometric analysis in relation to heat kernels, random walks, and Poisson boundaries on discrete groups, graphs, and other combinatorial objects.

Convex and Discrete Geometry

Convex and Discrete Geometry
Author: Peter M. Gruber
Publisher: Springer Science & Business Media
Total Pages: 590
Release: 2007-05-17
Genre: Mathematics
ISBN: 3540711333

Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other subdisciplines. This book provides a comprehensive overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers, and useful to people working in the applied fields.

Applications of Discrete Geometry and Mathematical Morphology

Applications of Discrete Geometry and Mathematical Morphology
Author: Ullrich Köthe
Publisher: Springer
Total Pages: 175
Release: 2012-07-30
Genre: Computers
ISBN: 3642323138

This book constitutes the refereed proceedings of the first Workshop on Applications of Discrete Geometry and Mathematical Morphology, WADGMM 2010, held at the International Conference on Pattern Recognition in Istanbul, Turkey, in August 2010. The 11 revised full papers presented were carefully reviewed and selected from 25 submissions. The book was specifically designed to promote interchange and collaboration between experts in discrete geometry/mathematical morphology and potential users of these methods from other fields of image analysis and pattern recognition.

Analysis and Geometry on Graphs and Manifolds

Analysis and Geometry on Graphs and Manifolds
Author: Matthias Keller
Publisher: Cambridge University Press
Total Pages: 493
Release: 2020-08-20
Genre: Mathematics
ISBN: 1108587380

This book addresses the interplay between several rapidly expanding areas of mathematics. Suitable for graduate students as well as researchers, it provides surveys of topics linking geometry, spectral theory and stochastics.

Research Problems in Discrete Geometry

Research Problems in Discrete Geometry
Author: Peter Brass
Publisher: Springer Science & Business Media
Total Pages: 507
Release: 2006-01-27
Genre: Mathematics
ISBN: 0387299297

This book is the result of a 25-year-old project and comprises a collection of more than 500 attractive open problems in the field. The largely self-contained chapters provide a broad overview of discrete geometry, along with historical details and the most important partial results related to these problems. This book is intended as a source book for both professional mathematicians and graduate students who love beautiful mathematical questions, are willing to spend sleepless nights thinking about them, and who would like to get involved in mathematical research.

Geometric Analysis and Nonlinear Partial Differential Equations

Geometric Analysis and Nonlinear Partial Differential Equations
Author: Stefan Hildebrandt
Publisher: Springer Science & Business Media
Total Pages: 663
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642556272

This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.