Discontinuous Groups And Riemann Surfaces Am 79 Volume 79
Download Discontinuous Groups And Riemann Surfaces Am 79 Volume 79 full books in PDF, epub, and Kindle. Read online free Discontinuous Groups And Riemann Surfaces Am 79 Volume 79 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Leon Greenberg |
Publisher | : Princeton University Press |
Total Pages | : 452 |
Release | : 2016-03-02 |
Genre | : Mathematics |
ISBN | : 1400881641 |
Study 79 contains a collection of papers presented at the Conference on Discontinuous Groups and Ricmann Surfaces at the University of Maryland, May 21-25, 1973. The papers, by leading authorities, deal mainly with Fuchsian and Kleinian groups, Teichmüller spaces, Jacobian varieties, and quasiconformal mappings. These topics are intertwined, representing a common meeting of algebra, geometry, and analysis.
Author | : Irwin Kra |
Publisher | : Princeton University Press |
Total Pages | : 533 |
Release | : 2016-03-02 |
Genre | : Mathematics |
ISBN | : 1400881552 |
A classic treatment of Riemann surfaces from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the series, all books are available in paperback and as ebooks.
Author | : Volker Diekert |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 252 |
Release | : 2024-10-07 |
Genre | : Mathematics |
ISBN | : 3111473570 |
This book contains surveys and research articles on the state-of-the-art in finitely presented groups for researchers and graduate students. Overviews of current trends in exponential groups and of the classification of finite triangle groups and finite generalized tetrahedron groups are complemented by new results on a conjecture of Rosenberger and an approximation theorem. A special emphasis is on algorithmic techniques and their complexity, both for finitely generated groups and for finite Z-algebras, including explicit computer calculations highlighting important classical methods. A further chapter surveys connections to mathematical logic, in particular to universal theories of various classes of groups, and contains new results on countable elementary free groups. Applications to cryptography include overviews of techniques based on representations of p-groups and of non-commutative group actions. Further applications of finitely generated groups to topology and artificial intelligence complete the volume. All in all, leading experts provide up-to-date overviews and current trends in combinatorial group theory and its connections to cryptography and other areas.
Author | : Aaron Wootton |
Publisher | : Birkhäuser |
Total Pages | : 314 |
Release | : 2018-02-06 |
Genre | : Mathematics |
ISBN | : 3319660659 |
This highly readable book aims to ease the many challenges of starting undergraduate research. It accomplishes this by presenting a diverse series of self-contained, accessible articles which include specific open problems and prepare the reader to tackle them with ample background material and references. Each article also contains a carefully selected bibliography for further reading. The content spans the breadth of mathematics, including many topics that are not normally addressed by the undergraduate curriculum (such as matroid theory, mathematical biology, and operations research), yet have few enough prerequisites that the interested student can start exploring them under the guidance of a faculty member. Whether trying to start an undergraduate thesis, embarking on a summer REU, or preparing for graduate school, this book is appropriate for a variety of students and the faculty who guide them.
Author | : Jürgen Jost |
Publisher | : Springer Science & Business Media |
Total Pages | : 226 |
Release | : 2009-08-17 |
Genre | : Mathematics |
ISBN | : 3642005411 |
"Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective.
Author | : Samuil Leĭbovich Krushkalʹ |
Publisher | : American Mathematical Soc. |
Total Pages | : 212 |
Release | : 1986 |
Genre | : Mathematics |
ISBN | : 0821845160 |
Presents a unified exposition of the main areas and methods of the theory of Kleinian groups and the theory of uniformization of manifolds. This book lists the basic facts regarding Kleinian groups and serves as a general guide to the primary literature, particularly the Russian literature in the field.
Author | : A. Katok |
Publisher | : Elsevier |
Total Pages | : 1235 |
Release | : 2005-12-17 |
Genre | : Mathematics |
ISBN | : 0080478220 |
This second half of Volume 1 of this Handbook follows Volume 1A, which was published in 2002. The contents of these two tightly integrated parts taken together come close to a realization of the program formulated in the introductory survey "Principal Structures of Volume 1A.The present volume contains surveys on subjects in four areas of dynamical systems: Hyperbolic dynamics, parabolic dynamics, ergodic theory and infinite-dimensional dynamical systems (partial differential equations).. Written by experts in the field.. The coverage of ergodic theory in these two parts of Volume 1 is considerably more broad and thorough than that provided in other existing sources. . The final cluster of chapters discusses partial differential equations from the point of view of dynamical systems.
Author | : Robion C. Kirby |
Publisher | : Princeton University Press |
Total Pages | : 368 |
Release | : 2016-03-02 |
Genre | : Mathematics |
ISBN | : 1400881501 |
Since Poincaré's time, topologists have been most concerned with three species of manifold. The most primitive of these--the TOP manifolds--remained rather mysterious until 1968, when Kirby discovered his now famous torus unfurling device. A period of rapid progress with TOP manifolds ensued, including, in 1969, Siebenmann's refutation of the Hauptvermutung and the Triangulation Conjecture. Here is the first connected account of Kirby's and Siebenmann's basic research in this area. The five sections of this book are introduced by three articles by the authors that initially appeared between 1968 and 1970. Appendices provide a full discussion of the classification of homotopy tori, including Casson's unpublished work and a consideration of periodicity in topological surgery.
Author | : John Frank Adams |
Publisher | : Princeton University Press |
Total Pages | : 230 |
Release | : 1978-09-01 |
Genre | : Mathematics |
ISBN | : 1400821258 |
The theory of infinite loop spaces has been the center of much recent activity in algebraic topology. Frank Adams surveys this extensive work for researchers and students. Among the major topics covered are generalized cohomology theories and spectra; infinite-loop space machines in the sense of Boadman-Vogt, May, and Segal; localization and group completion; the transfer; the Adams conjecture and several proofs of it; and the recent theories of Adams and Priddy and of Madsen, Snaith, and Tornehave.
Author | : Joan S. Birman |
Publisher | : Princeton University Press |
Total Pages | : 237 |
Release | : 2016-03-02 |
Genre | : Mathematics |
ISBN | : 1400881420 |
The central theme of this study is Artin's braid group and the many ways that the notion of a braid has proved to be important in low-dimensional topology. In Chapter 1 the author is concerned with the concept of a braid as a group of motions of points in a manifold. She studies structural and algebraic properties of the braid groups of two manifolds, and derives systems of defining relations for the braid groups of the plane and sphere. In Chapter 2 she focuses on the connections between the classical braid group and the classical knot problem. After reviewing basic results she proceeds to an exploration of some possible implications of the Garside and Markov theorems. Chapter 3 offers discussion of matrix representations of the free group and of subgroups of the automorphism group of the free group. These ideas come to a focus in the difficult open question of whether Burau's matrix representation of the braid group is faithful. Chapter 4 is a broad view of recent results on the connections between braid groups and mapping class groups of surfaces. Chapter 5 contains a brief discussion of the theory of "plats." Research problems are included in an appendix.