Direct And Inverse Scattering For The Matrix Schrodinger Equation
Download Direct And Inverse Scattering For The Matrix Schrodinger Equation full books in PDF, epub, and Kindle. Read online free Direct And Inverse Scattering For The Matrix Schrodinger Equation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Tuncay Aktosun |
Publisher | : Springer Nature |
Total Pages | : 631 |
Release | : 2020-05-19 |
Genre | : Mathematics |
ISBN | : 3030384314 |
Authored by two experts in the field who have been long-time collaborators, this monograph treats the scattering and inverse scattering problems for the matrix Schrödinger equation on the half line with the general selfadjoint boundary condition. The existence, uniqueness, construction, and characterization aspects are treated with mathematical rigor, and physical insight is provided to make the material accessible to mathematicians, physicists, engineers, and applied scientists with an interest in scattering and inverse scattering. The material presented is expected to be useful to beginners as well as experts in the field. The subject matter covered is expected to be interesting to a wide range of researchers including those working in quantum graphs and scattering on graphs. The theory presented is illustrated with various explicit examples to improve the understanding of scattering and inverse scattering problems. The monograph introduces a specific class of input data sets consisting of a potential and a boundary condition and a specific class of scattering data sets consisting of a scattering matrix and bound-state information. The important problem of the characterization is solved by establishing a one-to-one correspondence between the two aforementioned classes. The characterization result is formulated in various equivalent forms, providing insight and allowing a comparison of different techniques used to solve the inverse scattering problem. The past literature treated the type of boundary condition as a part of the scattering data used as input to recover the potential. This monograph provides a proper formulation of the inverse scattering problem where the type of boundary condition is no longer a part of the scattering data set, but rather both the potential and the type of boundary condition are recovered from the scattering data set.
Author | : Tuncay Aktosun |
Publisher | : |
Total Pages | : 624 |
Release | : 2021 |
Genre | : Scattering (Mathematics) |
ISBN | : 9783030384326 |
Authored by two experts in the field who have been long-time collaborators, this monograph treats the scattering and inverse scattering problems for the matrix Schrödinger equation on the half line with the general selfadjoint boundary condition. The existence, uniqueness, construction, and characterization aspects are treated with mathematical rigor, and physical insight is provided to make the material accessible to mathematicians, physicists, engineers, and applied scientists with an interest in scattering and inverse scattering. The material presented is expected to be useful to beginners as well as experts in the field. The subject matter covered is expected to be interesting to a wide range of researchers including those working in quantum graphs and scattering on graphs. The theory presented is illustrated with various explicit examples to improve the understanding of scattering and inverse scattering problems. The monograph introduces a specific class of input data sets consisting of a potential and a boundary condition and a specific class of scattering data sets consisting of a scattering matrix and bound-state information. The important problem of the characterization is solved by establishing a one-to-one correspondence between the two aforementioned classes. The characterization result is formulated in various equivalent forms, providing insight and allowing a comparison of different techniques used to solve the inverse scattering problem. The past literature treated the type of boundary condition as a part of the scattering data used as input to recover the potential. This monograph provides a proper formulation of the inverse scattering problem where the type of boundary condition is no longer a part of the scattering data set, but rather both the potential and the type of boundary condition are recovered from the scattering data set.
Author | : R.K. Bullough |
Publisher | : Springer Science & Business Media |
Total Pages | : 403 |
Release | : 2013-11-11 |
Genre | : Science |
ISBN | : 3642814484 |
With contributions by numerous experts
Author | : S. Novikov |
Publisher | : Springer Science & Business Media |
Total Pages | : 298 |
Release | : 1984-05-31 |
Genre | : Mathematics |
ISBN | : 9780306109775 |
Author | : Mark J. Ablowitz |
Publisher | : SIAM |
Total Pages | : 433 |
Release | : 2006-05-15 |
Genre | : Mathematics |
ISBN | : 089871477X |
A study, by two of the major contributors to the theory, of the inverse scattering transform and its application to problems of nonlinear dispersive waves that arise in fluid dynamics, plasma physics, nonlinear optics, particle physics, crystal lattice theory, nonlinear circuit theory and other areas. A soliton is a localised pulse-like nonlinear wave that possesses remarkable stability properties. Typically, problems that admit soliton solutions are in the form of evolution equations that describe how some variable or set of variables evolve in time from a given state. The equations may take a variety of forms, for example, PDEs, differential difference equations, partial difference equations, and integrodifferential equations, as well as coupled ODEs of finite order. What is surprising is that, although these problems are nonlinear, the general solution that evolves from almost arbitrary initial data may be obtained without approximation.
Author | : Vladimir Aleksandrovich Marchenko |
Publisher | : American Mathematical Soc. |
Total Pages | : 410 |
Release | : 2011-04-27 |
Genre | : Mathematics |
ISBN | : 0821853163 |
The spectral theory of Sturm-Liouville operators is a classical domain of analysis, comprising a wide variety of problems. This book aims to show what can be achieved with the aid of transformation operators in spectral theory as well as their applications.
Author | : Richard Beals |
Publisher | : American Mathematical Soc. |
Total Pages | : 226 |
Release | : 2015-03-02 |
Genre | : Mathematics |
ISBN | : 1470420546 |
This book deals with the theory of linear ordinary differential operators of arbitrary order. Unlike treatments that focus on spectral theory, this work centers on the construction of special eigenfunctions (generalized Jost solutions) and on the inverse problem: the problem of reconstructing the operator from minimal data associated to the special eigenfunctions. In the second order case this program includes spectral theory and is equivalent to quantum mechanical scattering theory; the essential analysis involves only the bounded eigenfunctions. For higher order operators, bounded eigenfunctions are again sufficient for spectral theory and quantum scattering theory, but they are far from sufficient for a successful inverse theory. The authors give a complete and self-contained theory of the inverse problem for an ordinary differential operator of any order. The theory provides a linearization for the associated nonlinear evolution equations, including KdV and Boussinesq. The authors also discuss Darboux-Bäcklund transformations, related first-order systems and their evolutions, and applications to spectral theory and quantum mechanical scattering theory. Among the book's most significant contributions are a new construction of normalized eigenfunctions and the first complete treatment of the self-adjoint inverse problem in order greater than two. In addition, the authors present the first analytic treatment of the corresponding flows, including a detailed description of the phase space for Boussinesq and other equations. The book is intended for mathematicians, physicists, and engineers in the area of soliton equations, as well as those interested in the analytical aspects of inverse scattering or in the general theory of linear ordinary differential operators. This book is likely to be a valuable resource to many. Required background consists of a basic knowledge of complex variable theory, the theory of ordinary differential equations, linear algebra, and functional analysis. The authors have attempted to make the book sufficiently complete and self-contained to make it accessible to a graduate student having no prior knowledge of scattering or inverse scattering theory. The book may therefore be suitable for a graduate textbook or as background reading in a seminar.
Author | : Z.S. Agranovich |
Publisher | : Courier Dover Publications |
Total Pages | : 307 |
Release | : 2020-05-21 |
Genre | : Mathematics |
ISBN | : 0486842495 |
This monograph by two Soviet experts in mathematical physics was a major contribution to inverse scattering theory. The two-part treatment examines the boundary-value problem with and without singularities. 1963 edition.
Author | : Mohsen Razavy |
Publisher | : World Scientific |
Total Pages | : 387 |
Release | : 2020-05-21 |
Genre | : Science |
ISBN | : 9811221685 |
This book is a compilation of different methods of formulating and solving inverse problems in physics from classical mechanics to the potentials and nucleus-nucleus scattering. Mathematical proofs are omitted since excellent monographs already exist dealing with these aspects of the inverse problems.The emphasis here is on finding numerical solutions to complicated equations. A detailed discussion is presented on the use of continued fractional expansion, its power and its limitation as applied to various physical problems. In particular, the inverse problem for discrete form of the wave equation is given a detailed exposition and applied to atomic and nuclear scattering, in the latter for elastic as well as inelastic collision. This technique is also used for inverse problem of geomagnetic induction and one-dimensional electrical conductivity. Among other topics covered are the inverse problem of torsional vibration, and also a chapter on the determination of the motion of a body with reflecting surface from its reflection coefficient.
Author | : Gerald Teschl |
Publisher | : American Mathematical Soc. |
Total Pages | : 373 |
Release | : 2000 |
Genre | : Mathematics |
ISBN | : 0821819402 |
This volume serves as an introduction and reference source on spectral and inverse theory of Jacobi operators and applications of these theories to the Toda and Kac-van Moerbeke hierarchy.