Dimension Reduction
Download Dimension Reduction full books in PDF, epub, and Kindle. Read online free Dimension Reduction ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : John A. Lee |
Publisher | : Springer Science & Business Media |
Total Pages | : 316 |
Release | : 2007-10-31 |
Genre | : Mathematics |
ISBN | : 038739351X |
This book describes established and advanced methods for reducing the dimensionality of numerical databases. Each description starts from intuitive ideas, develops the necessary mathematical details, and ends by outlining the algorithmic implementation. The text provides a lucid summary of facts and concepts relating to well-known methods as well as recent developments in nonlinear dimensionality reduction. Methods are all described from a unifying point of view, which helps to highlight their respective strengths and shortcomings. The presentation will appeal to statisticians, computer scientists and data analysts, and other practitioners having a basic background in statistics or computational learning.
Author | : Bing Li |
Publisher | : CRC Press |
Total Pages | : 307 |
Release | : 2018-04-27 |
Genre | : Mathematics |
ISBN | : 1498704484 |
Sufficient dimension reduction is a rapidly developing research field that has wide applications in regression diagnostics, data visualization, machine learning, genomics, image processing, pattern recognition, and medicine, because they are fields that produce large datasets with a large number of variables. Sufficient Dimension Reduction: Methods and Applications with R introduces the basic theories and the main methodologies, provides practical and easy-to-use algorithms and computer codes to implement these methodologies, and surveys the recent advances at the frontiers of this field. Features Provides comprehensive coverage of this emerging research field. Synthesizes a wide variety of dimension reduction methods under a few unifying principles such as projection in Hilbert spaces, kernel mapping, and von Mises expansion. Reflects most recent advances such as nonlinear sufficient dimension reduction, dimension folding for tensorial data, as well as sufficient dimension reduction for functional data. Includes a set of computer codes written in R that are easily implemented by the readers. Uses real data sets available online to illustrate the usage and power of the described methods. Sufficient dimension reduction has undergone momentous development in recent years, partly due to the increased demands for techniques to process high-dimensional data, a hallmark of our age of Big Data. This book will serve as the perfect entry into the field for the beginning researchers or a handy reference for the advanced ones. The author Bing Li obtained his Ph.D. from the University of Chicago. He is currently a Professor of Statistics at the Pennsylvania State University. His research interests cover sufficient dimension reduction, statistical graphical models, functional data analysis, machine learning, estimating equations and quasilikelihood, and robust statistics. He is a fellow of the Institute of Mathematical Statistics and the American Statistical Association. He is an Associate Editor for The Annals of Statistics and the Journal of the American Statistical Association.
Author | : Peter Benner |
Publisher | : Springer Science & Business Media |
Total Pages | : 397 |
Release | : 2006-03-30 |
Genre | : Technology & Engineering |
ISBN | : 3540279091 |
In the past decades, model reduction has become an ubiquitous tool in analysis and simulation of dynamical systems, control design, circuit simulation, structural dynamics, CFD, and many other disciplines dealing with complex physical models. The aim of this book is to survey some of the most successful model reduction methods in tutorial style articles and to present benchmark problems from several application areas for testing and comparing existing and new algorithms. As the discussed methods have often been developed in parallel in disconnected application areas, the intention of the mini-workshop in Oberwolfach and its proceedings is to make these ideas available to researchers and practitioners from all these different disciplines.
Author | : Jianzhong Wang |
Publisher | : Springer Science & Business Media |
Total Pages | : 363 |
Release | : 2012-04-28 |
Genre | : Computers |
ISBN | : 3642274978 |
"Geometric Structure of High-Dimensional Data and Dimensionality Reduction" adopts data geometry as a framework to address various methods of dimensionality reduction. In addition to the introduction to well-known linear methods, the book moreover stresses the recently developed nonlinear methods and introduces the applications of dimensionality reduction in many areas, such as face recognition, image segmentation, data classification, data visualization, and hyperspectral imagery data analysis. Numerous tables and graphs are included to illustrate the ideas, effects, and shortcomings of the methods. MATLAB code of all dimensionality reduction algorithms is provided to aid the readers with the implementations on computers. The book will be useful for mathematicians, statisticians, computer scientists, and data analysts. It is also a valuable handbook for other practitioners who have a basic background in mathematics, statistics and/or computer algorithms, like internet search engine designers, physicists, geologists, electronic engineers, and economists. Jianzhong Wang is a Professor of Mathematics at Sam Houston State University, U.S.A.
Author | : Christopher J. C. Burges |
Publisher | : Now Publishers Inc |
Total Pages | : 104 |
Release | : 2010 |
Genre | : Computers |
ISBN | : 1601983786 |
We give a tutorial overview of several foundational methods for dimension reduction. We divide the methods into projective methods and methods that model the manifold on which the data lies. For projective methods, we review projection pursuit, principal component analysis (PCA), kernel PCA, probabilistic PCA, canonical correlation analysis (CCA), kernel CCA, Fisher discriminant analysis, oriented PCA, and several techniques for sufficient dimension reduction. For the manifold methods, we review multidimensional scaling (MDS), landmark MDS, Isomap, locally linear embedding, Laplacian eigenmaps, and spectral clustering. Although the review focuses on foundations, we also provide pointers to some more modern techniques. We also describe the correlation dimension as one method for estimating the intrinsic dimension, and we point out that the notion of dimension can be a scale-dependent quantity. The Nystr m method, which links several of the manifold algorithms, is also reviewed. We use a publicly available dataset to illustrate some of the methods. The goal is to provide a self-contained overview of key concepts underlying many of these algorithms, and to give pointers for further reading.
Author | : Matthieu Cord |
Publisher | : Springer Science & Business Media |
Total Pages | : 297 |
Release | : 2008-02-07 |
Genre | : Computers |
ISBN | : 3540751718 |
Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it. Arising from the EU MUSCLE network, this multidisciplinary book provides a comprehensive coverage of the most important machine learning techniques used and their application in this domain.
Author | : Paul G. Constantine |
Publisher | : SIAM |
Total Pages | : 105 |
Release | : 2015-03-17 |
Genre | : Computers |
ISBN | : 1611973864 |
Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.
Author | : Philip D. Waggoner |
Publisher | : Cambridge University Press |
Total Pages | : 98 |
Release | : 2021-08-05 |
Genre | : Political Science |
ISBN | : 1108991645 |
Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github.
Author | : Valentin L. Popov |
Publisher | : Springer |
Total Pages | : 268 |
Release | : 2014-08-19 |
Genre | : Science |
ISBN | : 3642538762 |
This book describes for the first time a simulation method for the fast calculation of contact properties and friction between rough surfaces in a complete form. In contrast to existing simulation methods, the method of dimensionality reduction (MDR) is based on the exact mapping of various types of three-dimensional contact problems onto contacts of one-dimensional foundations. Within the confines of MDR, not only are three dimensional systems reduced to one-dimensional, but also the resulting degrees of freedom are independent from another. Therefore, MDR results in an enormous reduction of the development time for the numerical implementation of contact problems as well as the direct computation time and can ultimately assume a similar role in tribology as FEM has in structure mechanics or CFD methods, in hydrodynamics. Furthermore, it substantially simplifies analytical calculation and presents a sort of “pocket book edition” of the entirety contact mechanics. Measurements of the rheology of bodies in contact as well as their surface topography and adhesive properties are the inputs of the calculations. In particular, it is possible to capture the entire dynamics of a system – beginning with the macroscopic, dynamic contact calculation all the way down to the influence of roughness – in a single numerical simulation model. Accordingly, MDR allows for the unification of the methods of solving contact problems on different scales. The goals of this book are on the one hand, to prove the applicability and reliability of the method and on the other hand, to explain its extremely simple application to those interested.
Author | : Rabinarayan Satpathy |
Publisher | : John Wiley & Sons |
Total Pages | : 433 |
Release | : 2021-01-20 |
Genre | : Computers |
ISBN | : 111978560X |
Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.