Diffusions And Elliptic Operators
Download Diffusions And Elliptic Operators full books in PDF, epub, and Kindle. Read online free Diffusions And Elliptic Operators ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Richard F. Bass |
Publisher | : Springer Science & Business Media |
Total Pages | : 240 |
Release | : 2006-05-11 |
Genre | : Mathematics |
ISBN | : 0387226044 |
A discussion of the interplay of diffusion processes and partial differential equations with an emphasis on probabilistic methods. It begins with stochastic differential equations, the probabilistic machinery needed to study PDE, and moves on to probabilistic representations of solutions for PDE, regularity of solutions and one dimensional diffusions. The author discusses in depth two main types of second order linear differential operators: non-divergence operators and divergence operators, including topics such as the Harnack inequality of Krylov-Safonov for non-divergence operators and heat kernel estimates for divergence form operators, as well as Martingale problems and the Malliavin calculus. While serving as a textbook for a graduate course on diffusion theory with applications to PDE, this will also be a valuable reference to researchers in probability who are interested in PDE, as well as for analysts interested in probabilistic methods.
Author | : Alexander L. Skubachevskii |
Publisher | : Birkhäuser |
Total Pages | : 298 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034890338 |
Boundary value problems for elliptic differential-difference equations have some astonishing properties. For example, unlike elliptic differential equations, the smoothness of the generalized solutions can be broken in a bounded domain and is preserved only in some subdomains. The symbol of a self-adjoint semibounded functional differential operator can change its sign. The purpose of this book is to present for the first time general results concerning solvability and spectrum of these problems, a priori estimates and smoothness of solutions. The approach is based on the properties of elliptic operators and difference operators in Sobolev spaces. The most important features distinguishing this work are applications to different fields of science. The methods in this book are used to obtain new results regarding the solvability of nonlocal elliptic boundary value problems and the existence of Feller semigroups for multidimensional diffusion processes. Moreover, applications to control theory and aircraft and rocket technology are given. The theory is illustrated with numerous figures and examples. The book is addresssed to graduate students and researchers in partial differential equations and functional differential equations. It will also be of use to engineers in control theory and elasticity theory.
Author | : Vitaly Volpert |
Publisher | : Springer Science & Business Media |
Total Pages | : 649 |
Release | : 2011-03-03 |
Genre | : Mathematics |
ISBN | : 3034605374 |
The theory of elliptic partial differential equations has undergone an important development over the last two centuries. Together with electrostatics, heat and mass diffusion, hydrodynamics and many other applications, it has become one of the most richly enhanced fields of mathematics. This monograph undertakes a systematic presentation of the theory of general elliptic operators. The author discusses a priori estimates, normal solvability, the Fredholm property, the index of an elliptic operator, operators with a parameter, and nonlinear Fredholm operators. Particular attention is paid to elliptic problems in unbounded domains which have not yet been sufficiently treated in the literature and which require some special approaches. The book also contains an analysis of non-Fredholm operators and discrete operators as well as extensive historical and bibliographical comments . The selected topics and the author's level of discourse will make this book a most useful resource for researchers and graduate students working in the broad field of partial differential equations and applications.
Author | : Charles L. Epstein |
Publisher | : Princeton University Press |
Total Pages | : 320 |
Release | : 2013-04-07 |
Genre | : Mathematics |
ISBN | : 0691157154 |
This book provides the mathematical foundations for the analysis of a class of degenerate elliptic operators defined on manifolds with corners, which arise in a variety of applications such as population genetics, mathematical finance, and economics. The results discussed in this book prove the uniqueness of the solution to the Martingale problem and therefore the existence of the associated Markov process. Charles Epstein and Rafe Mazzeo use an "integral kernel method" to develop mathematical foundations for the study of such degenerate elliptic operators and the stochastic processes they define. The precise nature of the degeneracies of the principal symbol for these operators leads to solutions of the parabolic and elliptic problems that display novel regularity properties. Dually, the adjoint operator allows for rather dramatic singularities, such as measures supported on high codimensional strata of the boundary. Epstein and Mazzeo establish the uniqueness, existence, and sharp regularity properties for solutions to the homogeneous and inhomogeneous heat equations, as well as a complete analysis of the resolvent operator acting on Hölder spaces. They show that the semigroups defined by these operators have holomorphic extensions to the right half-plane. Epstein and Mazzeo also demonstrate precise asymptotic results for the long-time behavior of solutions to both the forward and backward Kolmogorov equations.
Author | : V.V. Jikov |
Publisher | : Springer Science & Business Media |
Total Pages | : 583 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642846599 |
It was mainly during the last two decades that the theory of homogenization or averaging of partial differential equations took shape as a distinct mathe matical discipline. This theory has a lot of important applications in mechanics of composite and perforated materials, filtration, disperse media, and in many other branches of physics, mechanics and modern technology. There is a vast literature on the subject. The term averaging has been usually associated with the methods of non linear mechanics and ordinary differential equations developed in the works of Poincare, Van Der Pol, Krylov, Bogoliubov, etc. For a long time, after the works of Maxwell and Rayleigh, homogeniza tion problems for· partial differential equations were being mostly considered by specialists in physics and mechanics, and were staying beyond the scope of mathematicians. A great deal of attention was given to the so called disperse media, which, in the simplest case, are two-phase media formed by the main homogeneous material containing small foreign particles (grains, inclusions). Such two-phase bodies, whose size is considerably larger than that of each sep arate inclusion, have been discovered to possess stable physical properties (such as heat transfer, electric conductivity, etc.) which differ from those of the con stituent phases. For this reason, the word homogenized, or effective, is used in relation to these characteristics. An enormous number of results, approximation formulas, and estimates have been obtained in connection with such problems as electromagnetic wave scattering on small particles, effective heat transfer in two-phase media, etc.
Author | : John Roe |
Publisher | : CRC Press |
Total Pages | : 218 |
Release | : 2013-12-19 |
Genre | : Mathematics |
ISBN | : 1482247836 |
Ten years after publication of the popular first edition of this volume, the index theorem continues to stand as a central result of modern mathematics-one of the most important foci for the interaction of topology, geometry, and analysis. Retaining its concise presentation but offering streamlined analyses and expanded coverage of important exampl
Author | : Ross G. Pinsky |
Publisher | : Cambridge University Press |
Total Pages | : 492 |
Release | : 1995-01-12 |
Genre | : Mathematics |
ISBN | : 0521470145 |
In this book, Professor Pinsky gives a self-contained account of the theory of positive harmonic functions for second order elliptic operators, using an integrated probabilistic and analytic approach. The book begins with a treatment of the construction and basic properties of diffusion processes. This theory then serves as a vehicle for studying positive harmonic funtions. Starting with a rigorous treatment of the spectral theory of elliptic operators with nice coefficients on smooth, bounded domains, the author then develops the theory of the generalized principal eigenvalue, and the related criticality theory for elliptic operators on arbitrary domains. Martin boundary theory is considered, and the Martin boundary is explicitly calculated for several classes of operators. The book provides an array of criteria for determining whether a diffusion process is transient or recurrent. Also introduced are the theory of bounded harmonic functions, and Brownian motion on manifolds of negative curvature. Many results that form the folklore of the subject are here given a rigorous exposition, making this book a useful reference for the specialist, and an excellent guide for the graduate student.
Author | : John Roe |
Publisher | : CRC Press |
Total Pages | : 222 |
Release | : 1999-01-06 |
Genre | : Mathematics |
ISBN | : 9780582325029 |
Ten years after publication of the popular first edition of this volume, the index theorem continues to stand as a central result of modern mathematics-one of the most important foci for the interaction of topology, geometry, and analysis. Retaining its concise presentation but offering streamlined analyses and expanded coverage of important examples and applications, Elliptic Operators, Topology, and Asymptotic Methods, Second Edition introduces the ideas surrounding the heat equation proof of the Atiyah-Singer index theorem. The author builds towards proof of the Lefschetz formula and the full index theorem with four chapters of geometry, five chapters of analysis, and four chapters of topology. The topics addressed include Hodge theory, Weyl's theorem on the distribution of the eigenvalues of the Laplacian, the asymptotic expansion for the heat kernel, and the index theorem for Dirac-type operators using Getzler's direct method. As a "dessert," the final two chapters offer discussion of Witten's analytic approach to the Morse inequalities and the L2-index theorem of Atiyah for Galois coverings. The text assumes some background in differential geometry and functional analysis. With the partial differential equation theory developed within the text and the exercises in each chapter, Elliptic Operators, Topology, and Asymptotic Methods becomes the ideal vehicle for self-study or coursework. Mathematicians, researchers, and physicists working with index theory or supersymmetry will find it a concise but wide-ranging introduction to this important and intriguing field.
Author | : Qing Han |
Publisher | : American Mathematical Soc. |
Total Pages | : 161 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 0821853139 |
This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.
Author | : K.D. Elworthy |
Publisher | : Springer |
Total Pages | : 121 |
Release | : 2007-01-05 |
Genre | : Mathematics |
ISBN | : 3540470220 |
Stochastic differential equations, and Hoermander form representations of diffusion operators, can determine a linear connection associated to the underlying (sub)-Riemannian structure. This is systematically described, together with its invariants, and then exploited to discuss qualitative properties of stochastic flows, and analysis on path spaces of compact manifolds with diffusion measures. This should be useful to stochastic analysts, especially those with interests in stochastic flows, infinite dimensional analysis, or geometric analysis, and also to researchers in sub-Riemannian geometry. A basic background in differential geometry is assumed, but the construction of the connections is very direct and itself gives an intuitive and concrete introduction. Knowledge of stochastic analysis is also assumed for later chapters.