Differential Inclusions in a Banach Space

Differential Inclusions in a Banach Space
Author: Alexander Tolstonogov
Publisher: Springer Science & Business Media
Total Pages: 328
Release: 2000-10-31
Genre: Mathematics
ISBN: 9780792366188

Preface to the English Edition The present monograph is a revised and enlarged alternative of the author's monograph [19] which was devoted to the development of a unified approach to studying differential inclusions, whose values of the right hand sides are compact, not necessarily convex subsets of a Banach space. This approach relies on ideas and methods of modem functional analysis, general topology, the theory of multi-valued mappings and continuous selectors. Although the basic content of the previous monograph has been remained the same this monograph has been partly re-organized and the author's recent results have been added. The contents of the present book are divided into five Chapters and an Appendix. The first Chapter of the J>ook has been left without changes and deals with multi-valued differential equations generated by a differential inclusion. The second Chapter has been significantly revised and extended. Here the au thor's recent results concerning extreme continuous selectors of multi-functions with decomposable values, multi-valued selectors ofmulti-functions generated by a differential inclusion, the existence of solutions of a differential inclusion, whose right hand side has different properties of semicontinuity at different points, have been included. Some of these results made it possible to simplify schemes for proofs concerning the existence of solutions of differential inclu sions with semicontinuous right hand side a.nd to obtain new results. In this Chapter the existence of solutions of different types are considered.

Differential Geometry, Lie Groups, and Symmetric Spaces

Differential Geometry, Lie Groups, and Symmetric Spaces
Author: Sigurdur Helgason
Publisher: American Mathematical Soc.
Total Pages: 682
Release: 2001-06-12
Genre: Mathematics
ISBN: 0821828487

A great book ... a necessary item in any mathematical library. --S. S. Chern, University of California A brilliant book: rigorous, tightly organized, and covering a vast amount of good mathematics. --Barrett O'Neill, University of California This is obviously a very valuable and well thought-out book on an important subject. --Andre Weil, Institute for Advanced Study The study of homogeneous spaces provides excellent insights into both differential geometry and Lie groups. In geometry, for instance, general theorems and properties will also hold for homogeneous spaces, and will usually be easier to understand and to prove in this setting. For Lie groups, a significant amount of analysis either begins with or reduces to analysis on homogeneous spaces, frequently on symmetric spaces. For many years and for many mathematicians, Sigurdur Helgason's classic Differential Geometry, Lie Groups, and Symmetric Spaces has been--and continues to be--the standard source for this material. Helgason begins with a concise, self-contained introduction to differential geometry. Next is a careful treatment of the foundations of the theory of Lie groups, presented in a manner that since 1962 has served as a model to a number of subsequent authors. This sets the stage for the introduction and study of symmetric spaces, which form the central part of the book. The text concludes with the classification of symmetric spaces by means of the Killing-Cartan classification of simple Lie algebras over $\mathbb{C}$ and Cartan's classification of simple Lie algebras over $\mathbb{R}$, following a method of Victor Kac. The excellent exposition is supplemented by extensive collections of useful exercises at the end of each chapter. All of the problems have either solutions or substantial hints, found at the back of the book. For this edition, the author has made corrections and added helpful notes and useful references. Sigurdur Helgason was awarded the Steele Prize for Differential Geometry, Lie Groups, and Symmetric Spaces and Groups and Geometric Analysis.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations
Author: Haim Brezis
Publisher: Springer Science & Business Media
Total Pages: 600
Release: 2010-11-02
Genre: Mathematics
ISBN: 0387709142

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Differential Geometry of Singular Spaces and Reduction of Symmetry

Differential Geometry of Singular Spaces and Reduction of Symmetry
Author: J. Śniatycki
Publisher: Cambridge University Press
Total Pages: 249
Release: 2013-06-13
Genre: Mathematics
ISBN: 1107067383

In this book the author illustrates the power of the theory of subcartesian differential spaces for investigating spaces with singularities. Part I gives a detailed and comprehensive presentation of the theory of differential spaces, including integration of distributions on subcartesian spaces and the structure of stratified spaces. Part II presents an effective approach to the reduction of symmetries. Concrete applications covered in the text include reduction of symmetries of Hamiltonian systems, non-holonomically constrained systems, Dirac structures, and the commutation of quantization with reduction for a proper action of the symmetry group. With each application the author provides an introduction to the field in which relevant problems occur. This book will appeal to researchers and graduate students in mathematics and engineering.

Functional Spaces for the Theory of Elliptic Partial Differential Equations

Functional Spaces for the Theory of Elliptic Partial Differential Equations
Author: Françoise Demengel
Publisher: Springer Science & Business Media
Total Pages: 480
Release: 2012-01-24
Genre: Mathematics
ISBN: 1447128079

The theory of elliptic boundary problems is fundamental in analysis and the role of spaces of weakly differentiable functions (also called Sobolev spaces) is essential in this theory as a tool for analysing the regularity of the solutions. This book offers on the one hand a complete theory of Sobolev spaces, which are of fundamental importance for elliptic linear and non-linear differential equations, and explains on the other hand how the abstract methods of convex analysis can be combined with this theory to produce existence results for the solutions of non-linear elliptic boundary problems. The book also considers other kinds of functional spaces which are useful for treating variational problems such as the minimal surface problem. The main purpose of the book is to provide a tool for graduate and postgraduate students interested in partial differential equations, as well as a useful reference for researchers active in the field. Prerequisites include a knowledge of classical analysis, differential calculus, Banach and Hilbert spaces, integration and the related standard functional spaces, as well as the Fourier transformation on the Schwartz space. There are complete and detailed proofs of almost all the results announced and, in some cases, more than one proof is provided in order to highlight different features of the result. Each chapter concludes with a range of exercises of varying levels of difficulty, with hints to solutions provided for many of them.

The Differential Geometry of Finsler Spaces

The Differential Geometry of Finsler Spaces
Author: Hanno Rund
Publisher: Springer Science & Business Media
Total Pages: 298
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642516106

The present monograph is motivated by two distinct aims. Firstly, an endeavour has been made to furnish a reasonably comprehensive account of the theory of Finsler spaces based on the methods of classical differential geometry. Secondly, it is hoped that this monograph may serve also as an introduction to a branch of differential geometry which is closely related to various topics in theoretical physics, notably analytical dynamics and geometrical optics. With this second object in mind, an attempt has been made to describe the basic aspects of the theory in some detail - even at the expense of conciseness - while in the more specialised sections of the later chapters, which might be of interest chiefly to the specialist, a more succinct style has been adopted. The fact that there exist several fundamentally different points of view with regard to Finsler geometry has rendered the task of writing a coherent account a rather difficult one. This remark is relevant not only to the development of the subject on the basis of the tensor calculus, but is applicable in an even wider sense. The extensive work of H. BUSEMANN has opened up new avenues of approach to Finsler geometry which are independent of the methods of classical tensor analysis. In the latter sense, therefore, a full description of this approach does not fall within the scope of this treatise, although its fundamental l significance cannot be doubted.

Introduction to Differential Geometry of Space Curves and Surfaces

Introduction to Differential Geometry of Space Curves and Surfaces
Author: Taha Sochi
Publisher: Taha Sochi
Total Pages: 252
Release: 2022-09-14
Genre: Mathematics
ISBN:

This book is about differential geometry of space curves and surfaces. The formulation and presentation are largely based on a tensor calculus approach. It can be used as part of a course on tensor calculus as well as a textbook or a reference for an intermediate-level course on differential geometry of curves and surfaces. The book is furnished with an index, extensive sets of exercises and many cross references, which are hyperlinked for the ebook users, to facilitate linking related concepts and sections. The book also contains a considerable number of 2D and 3D graphic illustrations to help the readers and users to visualize the ideas and understand the abstract concepts. We also provided an introductory chapter where the main concepts and techniques needed to understand the offered materials of differential geometry are outlined to make the book fairly self-contained and reduce the need for external references.

Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators

Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators
Author: Nicolas Lerner
Publisher: Springer Science & Business Media
Total Pages: 408
Release: 2011-01-30
Genre: Mathematics
ISBN: 3764385103

This book is devoted to the study of pseudo-di?erential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. We have tried here to expose the most recent developments of the theory with its applications to local solvability and semi-classical estimates for non-selfadjoint operators. The?rstchapter,Basic Notions of Phase Space Analysis,isintroductoryand gives a presentation of very classical classes of pseudo-di?erential operators, along with some basic properties. As an illustration of the power of these methods, we give a proof of propagation of singularities for real-principal type operators (using aprioriestimates,andnotFourierintegraloperators),andweintroducethereader to local solvability problems. That chapter should be useful for a reader, say at the graduate level in analysis, eager to learn some basics on pseudo-di?erential operators. The second chapter, Metrics on the Phase Space begins with a review of symplectic algebra, Wigner functions, quantization formulas, metaplectic group and is intended to set the basic study of the phase space. We move forward to the more general setting of metrics on the phase space, following essentially the basic assumptions of L. H ̈ ormander (Chapter 18 in the book [73]) on this topic.