Differential Inclusions in a Banach Space

Differential Inclusions in a Banach Space
Author: Alexander Tolstonogov
Publisher: Springer Science & Business Media
Total Pages: 328
Release: 2000-10-31
Genre: Mathematics
ISBN: 9780792366188

Preface to the English Edition The present monograph is a revised and enlarged alternative of the author's monograph [19] which was devoted to the development of a unified approach to studying differential inclusions, whose values of the right hand sides are compact, not necessarily convex subsets of a Banach space. This approach relies on ideas and methods of modem functional analysis, general topology, the theory of multi-valued mappings and continuous selectors. Although the basic content of the previous monograph has been remained the same this monograph has been partly re-organized and the author's recent results have been added. The contents of the present book are divided into five Chapters and an Appendix. The first Chapter of the J>ook has been left without changes and deals with multi-valued differential equations generated by a differential inclusion. The second Chapter has been significantly revised and extended. Here the au thor's recent results concerning extreme continuous selectors of multi-functions with decomposable values, multi-valued selectors ofmulti-functions generated by a differential inclusion, the existence of solutions of a differential inclusion, whose right hand side has different properties of semicontinuity at different points, have been included. Some of these results made it possible to simplify schemes for proofs concerning the existence of solutions of differential inclu sions with semicontinuous right hand side a.nd to obtain new results. In this Chapter the existence of solutions of different types are considered.

Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces

Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces
Author: Mikhail I. Kamenskii
Publisher: Walter de Gruyter
Total Pages: 245
Release: 2011-07-20
Genre: Mathematics
ISBN: 3110870894

The theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented.

Differential Inclusions in a Banach Space

Differential Inclusions in a Banach Space
Author: Alexander Tolstonogov
Publisher: Springer Science & Business Media
Total Pages: 314
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401594902

Preface to the English Edition The present monograph is a revised and enlarged alternative of the author's monograph [19] which was devoted to the development of a unified approach to studying differential inclusions, whose values of the right hand sides are compact, not necessarily convex subsets of a Banach space. This approach relies on ideas and methods of modem functional analysis, general topology, the theory of multi-valued mappings and continuous selectors. Although the basic content of the previous monograph has been remained the same this monograph has been partly re-organized and the author's recent results have been added. The contents of the present book are divided into five Chapters and an Appendix. The first Chapter of the J>ook has been left without changes and deals with multi-valued differential equations generated by a differential inclusion. The second Chapter has been significantly revised and extended. Here the au thor's recent results concerning extreme continuous selectors of multi-functions with decomposable values, multi-valued selectors ofmulti-functions generated by a differential inclusion, the existence of solutions of a differential inclusion, whose right hand side has different properties of semicontinuity at different points, have been included. Some of these results made it possible to simplify schemes for proofs concerning the existence of solutions of differential inclu sions with semicontinuous right hand side a.nd to obtain new results. In this Chapter the existence of solutions of different types are considered.

Differential Inclusions in a Banach Space

Differential Inclusions in a Banach Space
Author: Alexander Tolstonogov
Publisher:
Total Pages: 320
Release: 2000-10-31
Genre:
ISBN: 9789401594912

This monograph is devoted to the development of a unified approach for studying differential inclusions in a Banach space with non-convex right-hand side, a new branch of the classical theory of ordinary differential equations. Differential inclusions are now a mature field of mathematical activity, with their own methods, techniques, and applications, which range from economics to physics and biology. The current approach relies on ideas and methods from modern functional analysis, general topology, the theory of multifunctions, and continuous selectors. Audience: This volume will be of interest to researchers and postgraduate student whose work involves differential equations, functional analysis, topology, and the theory of set-valued functions.

Multivalued Maps And Differential Inclusions: Elements Of Theory And Applications

Multivalued Maps And Differential Inclusions: Elements Of Theory And Applications
Author: Valeri Obukhovskii
Publisher: World Scientific
Total Pages: 221
Release: 2020-04-04
Genre: Mathematics
ISBN: 9811220239

The theory of multivalued maps and the theory of differential inclusions are closely connected and intensively developing branches of contemporary mathematics. They have effective and interesting applications in control theory, optimization, calculus of variations, non-smooth and convex analysis, game theory, mathematical economics and in other fields.This book presents a user-friendly and self-contained introduction to both subjects. It is aimed at 'beginners', starting with students of senior courses. The book will be useful both for readers whose interests lie in the sphere of pure mathematics, as well as for those who are involved in applicable aspects of the theory. In Chapter 0, basic definitions and fundamental results in topology are collected. Chapter 1 begins with examples showing how naturally the idea of a multivalued map arises in diverse areas of mathematics, continues with the description of a variety of properties of multivalued maps and finishes with measurable multivalued functions. Chapter 2 is devoted to the theory of fixed points of multivalued maps. The whole of Chapter 3 focuses on the study of differential inclusions and their applications in control theory. The subject of last Chapter 4 is the applications in dynamical systems, game theory, and mathematical economics.The book is completed with the bibliographic commentaries and additions containing the exposition related both to the sections described in the book and to those which left outside its framework. The extensive bibliography (including more than 400 items) leads from basic works to recent studies.

Solution Sets for Differential Equations and Inclusions

Solution Sets for Differential Equations and Inclusions
Author: Smaïl Djebali
Publisher: Walter de Gruyter
Total Pages: 474
Release: 2012-12-06
Genre: Mathematics
ISBN: 3110293560

This monograph gives a systematic presentation of classical and recent results obtained in the last couple of years. It comprehensively describes the methods concerning the topological structure of fixed point sets and solution sets for differential equations and inclusions. Many of the basic techniques and results recently developed about this theory are presented, as well as the literature that is disseminated and scattered in several papers of pioneering researchers who developed the functional analytic framework of this field over the past few decades. Several examples of applications relating to initial and boundary value problems are discussed in detail. The book is intended to advanced graduate researchers and instructors active in research areas with interests in topological properties of fixed point mappings and applications; it also aims to provide students with the necessary understanding of the subject with no deep background material needed. This monograph fills the vacuum in the literature regarding the topological structure of fixed point sets and its applications.

Impulsive Differential Inclusions

Impulsive Differential Inclusions
Author: John R. Graef
Publisher: Walter de Gruyter
Total Pages: 412
Release: 2013-07-31
Genre: Mathematics
ISBN: 3110295318

Differential equations with impulses arise as models of many evolving processes that are subject to abrupt changes, such as shocks, harvesting, and natural disasters. These phenomena involve short-term perturbations from continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an entire evolution. In models involving such perturbations, it is natural to assume these perturbations act instantaneously or in the form of impulses. As a consequence, impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth. There are also many different studies in biology and medicine for which impulsive differential equations provide good models. During the last 10 years, the authors have been responsible for extensive contributions to the literature on impulsive differential inclusions via fixed point methods. This book is motivated by that research as the authors endeavor to bring under one cover much of those results along with results by other researchers either affecting or affected by the authors' work. The questions of existence and stability of solutions for different classes of initial value problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems. In addition, since differential equations can be viewed as special cases of differential inclusions, significant attention is also given to relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simpler beginnings as well.

Approximation and Optimization of Discrete and Differential Inclusions

Approximation and Optimization of Discrete and Differential Inclusions
Author: Elimhan N Mahmudov
Publisher: Elsevier
Total Pages: 396
Release: 2011-08-25
Genre: Mathematics
ISBN: 0123884330

Optimal control theory has numerous applications in both science and engineering. This book presents basic concepts and principles of mathematical programming in terms of set-valued analysis and develops a comprehensive optimality theory of problems described by ordinary and partial differential inclusions. - In addition to including well-recognized results of variational analysis and optimization, the book includes a number of new and important ones - Includes practical examples

Stochastic Differential Inclusions and Applications

Stochastic Differential Inclusions and Applications
Author: Michał Kisielewicz
Publisher: Springer Science & Business Media
Total Pages: 295
Release: 2013-06-12
Genre: Mathematics
ISBN: 146146756X

​This book aims to further develop the theory of stochastic functional inclusions and their applications for describing the solutions of the initial and boundary value problems for partial differential inclusions. The self-contained volume is designed to introduce the reader in a systematic fashion, to new methods of the stochastic optimal control theory from the very beginning. The exposition contains detailed proofs and uses new and original methods to characterize the properties of stochastic functional inclusions that, up to the present time, have only been published recently by the author. The work is divided into seven chapters, with the first two acting as an introduction, containing selected material dealing with point- and set-valued stochastic processes, and the final two devoted to applications and optimal control problems. The book presents recent and pressing issues in stochastic processes, control, differential games, optimization and their application in finance, manufacturing, queueing networks, and climate control. Written by an award-winning author in the field of stochastic differential inclusions and their application to control theory, This book is intended for students and researchers in mathematics and applications; particularly those studying optimal control theory. It is also highly relevant for students of economics and engineering. The book can also be used as a reference on stochastic differential inclusions. Knowledge of select topics in analysis and probability theory are required.