Differential Geometry, Lie Groups, and Symmetric Spaces

Differential Geometry, Lie Groups, and Symmetric Spaces
Author: Sigurdur Helgason
Publisher: American Mathematical Soc.
Total Pages: 682
Release: 2001-06-12
Genre: Mathematics
ISBN: 0821828487

A great book ... a necessary item in any mathematical library. --S. S. Chern, University of California A brilliant book: rigorous, tightly organized, and covering a vast amount of good mathematics. --Barrett O'Neill, University of California This is obviously a very valuable and well thought-out book on an important subject. --Andre Weil, Institute for Advanced Study The study of homogeneous spaces provides excellent insights into both differential geometry and Lie groups. In geometry, for instance, general theorems and properties will also hold for homogeneous spaces, and will usually be easier to understand and to prove in this setting. For Lie groups, a significant amount of analysis either begins with or reduces to analysis on homogeneous spaces, frequently on symmetric spaces. For many years and for many mathematicians, Sigurdur Helgason's classic Differential Geometry, Lie Groups, and Symmetric Spaces has been--and continues to be--the standard source for this material. Helgason begins with a concise, self-contained introduction to differential geometry. Next is a careful treatment of the foundations of the theory of Lie groups, presented in a manner that since 1962 has served as a model to a number of subsequent authors. This sets the stage for the introduction and study of symmetric spaces, which form the central part of the book. The text concludes with the classification of symmetric spaces by means of the Killing-Cartan classification of simple Lie algebras over $\mathbb{C}$ and Cartan's classification of simple Lie algebras over $\mathbb{R}$, following a method of Victor Kac. The excellent exposition is supplemented by extensive collections of useful exercises at the end of each chapter. All of the problems have either solutions or substantial hints, found at the back of the book. For this edition, the author has made corrections and added helpful notes and useful references. Sigurdur Helgason was awarded the Steele Prize for Differential Geometry, Lie Groups, and Symmetric Spaces and Groups and Geometric Analysis.

Differential Geometry, Lie Groups, and Symmetric Spaces

Differential Geometry, Lie Groups, and Symmetric Spaces
Author: Sigurdur Helgason
Publisher: Academic Press
Total Pages: 647
Release: 1979-02-09
Genre: Mathematics
ISBN: 0080873960

The present book is intended as a textbook and reference work on three topics in the title. Together with a volume in progress on "Groups and Geometric Analysis" it supersedes my "Differential Geometry and Symmetric Spaces," published in 1962. Since that time several branches of the subject, particularly the function theory on symmetric spaces, have developed substantially. I felt that an expanded treatment might now be useful.

Differential Geometry and Symmetric Spaces

Differential Geometry and Symmetric Spaces
Author: Sigurdur Helgason
Publisher: American Mathematical Soc.
Total Pages: 506
Release: 2001-01-16
Genre: Mathematics
ISBN: 0821827359

Sigurdur Helgason's Differential Geometry and Symmetric Spaces was quickly recognized as a remarkable and important book. For many years, it was the standard text both for Riemannian geometry and for the analysis and geometry of symmetric spaces. Several generations of mathematicians relied on it for its clarity and careful attention to detail. Although much has happened in the field since the publication of this book, as demonstrated by Helgason's own three-volume expansion of the original work, this single volume is still an excellent overview of the subjects. For instance, even though there are now many competing texts, the chapters on differential geometry and Lie groups continue to be among the best treatments of the subjects available. There is also a well-developed treatment of Cartan's classification and structure theory of symmetric spaces. The last chapter, on functions on symmetric spaces, remains an excellent introduction to the study of spherical functions, the theory of invariant differential operators, and other topics in harmonic analysis. This text is rightly called a classic.

Locally Mixed Symmetric Spaces

Locally Mixed Symmetric Spaces
Author: Bruce Hunt
Publisher: Springer Nature
Total Pages: 622
Release: 2021-09-04
Genre: Mathematics
ISBN: 3030698041

What do the classification of algebraic surfaces, Weyl's dimension formula and maximal orders in central simple algebras have in common? All are related to a type of manifold called locally mixed symmetric spaces in this book. The presentation emphasizes geometric concepts and relations and gives each reader the "roter Faden", starting from the basics and proceeding towards quite advanced topics which lie at the intersection of differential and algebraic geometry, algebra and topology. Avoiding technicalities and assuming only a working knowledge of real Lie groups, the text provides a wealth of examples of symmetric spaces. The last two chapters deal with one particular case (Kuga fiber spaces) and a generalization (elliptic surfaces), both of which require some knowledge of algebraic geometry. Of interest to topologists, differential or algebraic geometers working in areas related to arithmetic groups, the book also offers an introduction to the ideas for non-experts.

Groups and Geometric Analysis

Groups and Geometric Analysis
Author: Sigurdur Helgason
Publisher: American Mathematical Society
Total Pages: 667
Release: 2022-03-17
Genre: Mathematics
ISBN: 0821832115

Group-theoretic methods have taken an increasingly prominent role in analysis. Some of this change has been due to the writings of Sigurdur Helgason. This book is an introduction to such methods on spaces with symmetry given by the action of a Lie group. The introductory chapter is a self-contained account of the analysis on surfaces of constant curvature. Later chapters cover general cases of the Radon transform, spherical functions, invariant operators, compact symmetric spaces and other topics. This book, together with its companion volume, Geometric Analysis on Symmetric Spaces (AMS Mathematical Surveys and Monographs series, vol. 39, 1994), has become the standard text for this approach to geometric analysis. Sigurdur Helgason was awarded the Steele Prize for outstanding mathematical exposition for Groups and Geometric Analysis and Differential Geometry, Lie Groups and Symmetric Spaces.

New Horizons In Differential Geometry And Its Related Fields

New Horizons In Differential Geometry And Its Related Fields
Author: Toshiaki Adachi
Publisher: World Scientific
Total Pages: 257
Release: 2022-04-07
Genre: Mathematics
ISBN: 9811248117

This volume presents recent developments in geometric structures on Riemannian manifolds and their discretizations. With chapters written by recognized experts, these discussions focus on contact structures, Kähler structures, fiber bundle structures and Einstein metrics. It also contains works on the geometric approach on coding theory.For researchers and students, this volume forms an invaluable source to learn about these subjects that are not only in the field of differential geometry but also in other wide related areas. It promotes and deepens the study of geometric structures.

Differential Geometric Structures

Differential Geometric Structures
Author: Walter A. Poor
Publisher: Courier Corporation
Total Pages: 356
Release: 2015-04-27
Genre: Mathematics
ISBN: 0486151913

This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.

Geometric Analysis on Symmetric Spaces

Geometric Analysis on Symmetric Spaces
Author: Sigurdur Helgason
Publisher: American Mathematical Society
Total Pages: 657
Release: 2024-09-27
Genre: Mathematics
ISBN: 1470479095

This book gives the first systematic exposition of geometric analysis on Riemannian symmetric spaces and its relationship to the representation theory of Lie groups. The book starts with modern integral geometry for double fibrations and treats several examples in detail. After discussing the theory of Radon transforms and Fourier transforms on symmetric spaces, inversion formulas, and range theorems, Helgason examines applications to invariant differential equations on symmetric spaces, existence theorems, and explicit solution formulas, particularly potential theory and wave equations. The canonical multitemporal wave equation on a symmetric space is included. The book concludes with a chapter on eigenspace representations?that is, representations on solution spaces of invariant differential equations. Known for his high-quality expositions, Helgason received the 1988 Steele Prize for his earlier books Differential Geometry, Lie Groups and Symmetric Spaces and Groups and Geometric Analysis. Containing exercises (with solutions) and references to further results, this revised edition would be suitable for advanced graduate courses in modern integral geometry, analysis on Lie groups, and representation theory of Lie groups.