Asymptotic Differential Algebra and Model Theory of Transseries

Asymptotic Differential Algebra and Model Theory of Transseries
Author: Matthias Aschenbrenner
Publisher: Princeton University Press
Total Pages: 873
Release: 2017-06-06
Genre: Mathematics
ISBN: 0691175438

Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.

Differential Equations & Asymptotic Theory in Mathematical Physics

Differential Equations & Asymptotic Theory in Mathematical Physics
Author: Zhen Hua
Publisher: World Scientific
Total Pages: 389
Release: 2004
Genre: Mathematics
ISBN: 9812560556

This lecture notes volume encompasses four indispensable mini courses delivered at Wuhan University with each course containing the material from five one-hour lectures. Readers are brought up to date with exciting recent developments in the areas of asymptotic analysis, singular perturbations, orthogonal polynomials, and the application of Gevrey asymptotic expansion to holomorphic dynamical systems. The book also features important invited papers presented at the conference. Leading experts in the field cover a diverse range of topics from partial differential equations arising in cancer biology to transonic shock waves.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings? (ISTP? / ISI Proceedings)? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)? CC Proceedings ? Engineering & Physical Sciences

Asymptotic Methods in Equations of Mathematical Physics

Asymptotic Methods in Equations of Mathematical Physics
Author: B Vainberg
Publisher: CRC Press
Total Pages: 516
Release: 1989-02-25
Genre: Science
ISBN: 9782881246647

Typed English translation of a monograph first published (in Russian) in 1982. Provides graduate students and researchers with usefully detailed discussion of most of the asymptotic methods standard these days to the work of mathematical physicists. The author prefers not to dwell in the heights of abstraction; he has written a broadly intelligble book, which is informed at every point by his secure command of major physical applications. An expensive but valuable contribution to the literature of an important but too-little-written- about field. Twelve chapters, references. (NW) Annotation copyrighted by Book News, Inc., Portland, OR

Asymptotic Analysis of Differential Equations

Asymptotic Analysis of Differential Equations
Author: R. B. White
Publisher: World Scientific
Total Pages: 430
Release: 2010
Genre: Mathematics
ISBN: 1848166079

"This is a useful volume in which a wide selection of asymptotic techniques is clearly presented in a form suitable for both applied mathematicians and Physicists who require an introduction to asymptotic techniques." --Book Jacket.

Advanced Mathematical Methods for Scientists and Engineers I

Advanced Mathematical Methods for Scientists and Engineers I
Author: Carl M. Bender
Publisher: Springer Science & Business Media
Total Pages: 605
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475730691

A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.

Introduction to Asymptotic Methods

Introduction to Asymptotic Methods
Author: David Y. Gao
Publisher: CRC Press
Total Pages: 270
Release: 2006-05-03
Genre: Mathematics
ISBN: 1420011731

Among the theoretical methods for solving many problems of applied mathematics, physics, and technology, asymptotic methods often provide results that lead to obtaining more effective algorithms of numerical evaluation. Presenting the mathematical methods of perturbation theory, Introduction to Asymptotic Methods reviews the most important m

Partial Differential Equations V

Partial Differential Equations V
Author: M.V. Fedoryuk
Publisher: Springer Science & Business Media
Total Pages: 248
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642584233

In this paper we shall discuss the construction of formal short-wave asymp totic solutions of problems of mathematical physics. The topic is very broad. It can somewhat conveniently be divided into three parts: 1. Finding the short-wave asymptotics of a rather narrow class of problems, which admit a solution in an explicit form, via formulas that represent this solution. 2. Finding formal asymptotic solutions of equations that describe wave processes by basing them on some ansatz or other. We explain what 2 means. Giving an ansatz is knowing how to give a formula for the desired asymptotic solution in the form of a series or some expression containing a series, where the analytic nature of the terms of these series is indicated up to functions and coefficients that are undetermined at the first stage of consideration. The second stage is to determine these functions and coefficients using a direct substitution of the ansatz in the equation, the boundary conditions and the initial conditions. Sometimes it is necessary to use different ansiitze in different domains, and in the overlapping parts of these domains the formal asymptotic solutions must be asymptotically equivalent (the method of matched asymptotic expansions). The basis for success in the search for formal asymptotic solutions is a suitable choice of ansiitze. The study of the asymptotics of explicit solutions of special model problems allows us to "surmise" what the correct ansiitze are for the general solution.

Partial Differential Equations in Classical Mathematical Physics

Partial Differential Equations in Classical Mathematical Physics
Author: Isaak Rubinstein
Publisher: Cambridge University Press
Total Pages: 704
Release: 1998-04-28
Genre: Mathematics
ISBN: 9780521558464

The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.

Asymptotics of Elliptic and Parabolic PDEs

Asymptotics of Elliptic and Parabolic PDEs
Author: David Holcman
Publisher: Springer
Total Pages: 456
Release: 2018-05-25
Genre: Mathematics
ISBN: 3319768956

This is a monograph on the emerging branch of mathematical biophysics combining asymptotic analysis with numerical and stochastic methods to analyze partial differential equations arising in biological and physical sciences. In more detail, the book presents the analytic methods and tools for approximating solutions of mixed boundary value problems, with particular emphasis on the narrow escape problem. Informed throughout by real-world applications, the book includes topics such as the Fokker-Planck equation, boundary layer analysis, WKB approximation, applications of spectral theory, as well as recent results in narrow escape theory. Numerical and stochastic aspects, including mean first passage time and extreme statistics, are discussed in detail and relevant applications are presented in parallel with the theory. Including background on the classical asymptotic theory of differential equations, this book is written for scientists of various backgrounds interested in deriving solutions to real-world problems from first principles.

Oscillation Theory for Neutral Differential Equations with Delay

Oscillation Theory for Neutral Differential Equations with Delay
Author: D.D Bainov
Publisher: CRC Press
Total Pages: 296
Release: 1991-01-01
Genre: Mathematics
ISBN: 9780750301428

With neutral differential equations, any lack of smoothness in initial conditions is not damped and so they have proven to be difficult to solve. Until now, there has been little information to help with this problem. Oscillation Theory for Neutral Differential Equations with Delay fills a vacuum in qualitative theory of functional differential equations of neutral type. With much of the presented material previously unavailable outside Eastern Europe, this authoritative book provides a stimulus to research the oscillatory and asymptotic properties of these equations. It examines equations of first, second, and higher orders as well as the asymptotic behavior for tending toward infinity. These results are then generalized for partial differential equations of neutral type. The book also describes the historical development of the field and discusses applications in mathematical models of processes and phenomena in physics, electrical control and engineering, physical chemistry, and mathematical biology. This book is an important tool not only for mathematicians, but also for specialists in many fields including physicists, engineers, and biologists. It may be used as a graduate-level textbook or as a reference book for a wide range of subjects, from radiophysics to electrical and control engineering to biological science.