Differentiable Functions On Bad Domains

Differentiable Functions On Bad Domains
Author: Vladimir G Maz'ya
Publisher: World Scientific
Total Pages: 502
Release: 1998-01-15
Genre: Mathematics
ISBN: 9814498564

The spaces of functions with derivatives in Lp, called the Sobolev spaces, play an important role in modern analysis. During the last decades, these spaces have been intensively studied and by now many problems associated with them have been solved. However, the theory of these function classes for domains with nonsmooth boundaries is still in an unsatisfactory state.In this book, which partially fills this gap, certain aspects of the theory of Sobolev spaces for domains with singularities are studied. We mainly focus on the so-called imbedding theorems, extension theorems and trace theorems that have numerous applications to partial differential equations. Some of such applications are given.Much attention is also paid to counter examples showing, in particular, the difference between Sobolev spaces of the first and higher orders. A considerable part of the monograph is devoted to Sobolev classes for parameter dependent domains and domains with cusps, which are the simplest non-Lipschitz domains frequently used in applications.This book will be interesting not only to specialists in analysis but also to postgraduate students.

Differentiable Functions on Bad Domains

Differentiable Functions on Bad Domains
Author: V. G. Maz?i?a
Publisher: World Scientific
Total Pages: 512
Release: 1997
Genre: Mathematics
ISBN: 9789810227678

The spaces of functions with derivatives in p, called the Sobolev spaces, play an important role in modern analysis. During the last decades, these spaces have been intensively studied and by now many problems associated with them have been solved. However, the theory of these function classes for domains with nonsmooth boundaries is still in an unsatisfactory state.In this book, which partially fills this gap, certain aspects of the theory of Sobolev spaces for domains with singularities are studied. We mainly focus on the so-called imbedding theorems, extension theorems and trace theorems that have numerous applications to partial differential equations. Some of such applications are given.Much attention is also paid to counter examples showing, in particular, the difference between Sobolev spaces of the first and higher orders. A considerable part of the monograph is devoted to Sobolev classes for parameter dependent domains and domains with cusps, which are the simplest non-Lipschitz domains frequently used in applications.This book will be interesting not only to specialists in analysis but also to postgraduate students.

Perspectives in Partial Differential Equations, Harmonic Analysis and Applications

Perspectives in Partial Differential Equations, Harmonic Analysis and Applications
Author: Dorina Mitrea
Publisher: American Mathematical Soc.
Total Pages: 446
Release: 2008
Genre: Mathematics
ISBN: 0821844245

This volume contains a collection of papers contributed on the occasion of Mazya's 70th birthday by a distinguished group of experts of international stature in the fields of harmonic analysis, partial differential equations, function theory, and spectral analysis, reflecting the state of the art in these areas.

Analysis, Partial Differential Equations and Applications

Analysis, Partial Differential Equations and Applications
Author: Alberto Cialdea
Publisher: Springer Science & Business Media
Total Pages: 342
Release: 2010-01-14
Genre: Mathematics
ISBN: 3764398981

This volume includes several invited lectures given at the International Workshop "Analysis, Partial Differential Equations and Applications", held at the Mathematical Department of Sapienza University of Rome, on the occasion of the 70th birthday of Vladimir G. Maz'ya, a renowned mathematician and one of the main experts in the field of pure and applied analysis. The book aims at spreading the seminal ideas of Maz'ya to a larger audience in faculties of sciences and engineering. In fact, all articles were inspired by previous works of Maz'ya in several frameworks, including classical and contemporary problems connected with boundary and initial value problems for elliptic, hyperbolic and parabolic operators, Schrödinger-type equations, mathematical theory of elasticity, potential theory, capacity, singular integral operators, p-Laplacians, functional analysis, and approximation theory. Maz'ya is author of more than 450 papers and 20 books. In his long career he obtained many astonishing and frequently cited results in the theory of harmonic potentials on non-smooth domains, potential and capacity theories, spaces of functions with bounded variation, maximum principle for higher-order elliptic equations, Sobolev multipliers, approximate approximations, etc. The topics included in this volume will be particularly useful to all researchers who are interested in achieving a deeper understanding of the large expertise of Vladimir Maz'ya.

The Maz'ya Anniversary Collection

The Maz'ya Anniversary Collection
Author: Jürgen Rossmann
Publisher: Springer Science & Business Media
Total Pages: 384
Release: 1999
Genre: Mathematics
ISBN: 9783764362010

This is the first volume of a collection of articles dedicated to V.G Maz'ya on the occasion of his 60th birthday. It contains surveys on his work in different fields of mathematics or on areas to which he made essential contributions. Other articles of this book have their origin in the common work with Maz'ya. V.G Maz'ya is author or co-author of more than 300 scientific works on various fields of functional analysis, function theory, numerical analysis, partial differential equations and their application. The reviews in this book show his enormous productivity and the large variety of his work. The scond volume contains most of the invited lectures of the Conference on Functional Analysis, Partial Differential Equations and Applications held in Rostock in September 1998 in honor of V.G Maz'ya. Here different problems of functional analysis, potential theory, linear and nonlinear partial differential equations, theory of function spaces and numerical analysis are treated. The authors, who are outstanding experts in these fields, present surveys as well as new results.