Difference Equations Special Functions And Orthogonal Polynomials
Download Difference Equations Special Functions And Orthogonal Polynomials full books in PDF, epub, and Kindle. Read online free Difference Equations Special Functions And Orthogonal Polynomials ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Francisco Marcellàn |
Publisher | : Springer Science & Business Media |
Total Pages | : 432 |
Release | : 2006-06-19 |
Genre | : Mathematics |
ISBN | : 3540310622 |
Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey’s scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.
Author | : Saber Elaydi |
Publisher | : World Scientific |
Total Pages | : 789 |
Release | : 2007 |
Genre | : Science |
ISBN | : 9812770755 |
This volume contains talks given at a joint meeting of three communities working in the fields of difference equations, special functions and applications (ISDE, OPSFA, and SIDE). The articles reflect the diversity of the topics in the meeting but have difference equations as common thread. Articles cover topics in difference equations, discrete dynamical systems, special functions, orthogonal polynomials, symmetries, and integrable difference equations.
Author | : Saber Elaydi |
Publisher | : World Scientific |
Total Pages | : 789 |
Release | : 2007 |
Genre | : Science |
ISBN | : 9812706437 |
This volume contains talks given at a joint meeting of three communities working in the fields of difference equations, special functions and applications (ISDE, OPSFA, and SIDE). The articles reflect the diversity of the topics in the meeting but have difference equations as common thread. Articles cover topics in difference equations, discrete dynamical systems, special functions, orthogonal polynomials, symmetries, and integrable difference equations.
Author | : Jim M Cushing |
Publisher | : World Scientific |
Total Pages | : 789 |
Release | : 2007-05-21 |
Genre | : Mathematics |
ISBN | : 9814475467 |
This volume contains talks given at a joint meeting of three communities working in the fields of difference equations, special functions and applications (ISDE, OPSFA, and SIDE). The articles reflect the diversity of the topics in the meeting but have difference equations as common thread. Articles cover topics in difference equations, discrete dynamical systems, special functions, orthogonal polynomials, symmetries, and integrable difference equations.
Author | : Mourad Ismail |
Publisher | : Cambridge University Press |
Total Pages | : 748 |
Release | : 2005-11-21 |
Genre | : Mathematics |
ISBN | : 9780521782012 |
The first modern treatment of orthogonal polynomials from the viewpoint of special functions is now available in paperback.
Author | : Ravi P. Agarwal |
Publisher | : Springer Science & Business Media |
Total Pages | : 422 |
Release | : 2008-11-13 |
Genre | : Mathematics |
ISBN | : 0387791469 |
In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.
Author | : George E. Andrews |
Publisher | : Cambridge University Press |
Total Pages | : 684 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 9780521789882 |
An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.
Author | : Richard Beals |
Publisher | : Cambridge University Press |
Total Pages | : 489 |
Release | : 2016-05-17 |
Genre | : Mathematics |
ISBN | : 1107106982 |
A comprehensive graduate-level introduction to classical and contemporary aspects of special functions.
Author | : Richard Askey |
Publisher | : SIAM |
Total Pages | : 115 |
Release | : 1975-06-01 |
Genre | : Mathematics |
ISBN | : 0898710189 |
This volume presents the idea that one studies orthogonal polynomials and special functions to use them to solve problems.
Author | : Roelof Koekoek |
Publisher | : Springer Science & Business Media |
Total Pages | : 584 |
Release | : 2010-03-18 |
Genre | : Mathematics |
ISBN | : 364205014X |
The present book is about the Askey scheme and the q-Askey scheme, which are graphically displayed right before chapter 9 and chapter 14, respectively. The fa- lies of orthogonal polynomials in these two schemes generalize the classical orth- onal polynomials (Jacobi, Laguerre and Hermite polynomials) and they have pr- erties similar to them. In fact, they have properties so similar that I am inclined (f- lowing Andrews & Askey [34]) to call all families in the (q-)Askey scheme classical orthogonal polynomials, and to call the Jacobi, Laguerre and Hermite polynomials very classical orthogonal polynomials. These very classical orthogonal polynomials are good friends of mine since - most the beginning of my mathematical career. When I was a fresh PhD student at the Mathematical Centre (now CWI) in Amsterdam, Dick Askey spent a sabbatical there during the academic year 1969–1970. He lectured to us in a very stimulating wayabouthypergeometricfunctionsandclassicalorthogonalpolynomials. Evenb- ter, he gave us problems to solve which might be worth a PhD. He also pointed out to us that there was more than just Jacobi, Laguerre and Hermite polynomials, for instance Hahn polynomials, and that it was one of the merits of the Higher Transc- dental Functions (Bateman project) that it included some newer stuff like the Hahn polynomials (see [198, §10. 23]).