Evolutionary Computation for Dynamic Optimization Problems

Evolutionary Computation for Dynamic Optimization Problems
Author: Shengxiang Yang
Publisher: Springer
Total Pages: 479
Release: 2013-11-18
Genre: Technology & Engineering
ISBN: 3642384161

This book provides a compilation on the state-of-the-art and recent advances of evolutionary computation for dynamic optimization problems. The motivation for this book arises from the fact that many real-world optimization problems and engineering systems are subject to dynamic environments, where changes occur over time. Key issues for addressing dynamic optimization problems in evolutionary computation, including fundamentals, algorithm design, theoretical analysis, and real-world applications, are presented. "Evolutionary Computation for Dynamic Optimization Problems" is a valuable reference to scientists, researchers, professionals and students in the field of engineering and science, particularly in the areas of computational intelligence, nature- and bio-inspired computing, and evolutionary computation.

Advances in Evolutionary Computing

Advances in Evolutionary Computing
Author: Ashish Ghosh
Publisher: Springer Science & Business Media
Total Pages: 1001
Release: 2012-12-06
Genre: Computers
ISBN: 3642189652

This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.

Evolutionary Computation in Dynamic and Uncertain Environments

Evolutionary Computation in Dynamic and Uncertain Environments
Author: Shengxiang Yang
Publisher: Springer
Total Pages: 614
Release: 2007-04-03
Genre: Technology & Engineering
ISBN: 3540497749

This book compiles recent advances of evolutionary algorithms in dynamic and uncertain environments within a unified framework. The book is motivated by the fact that some degree of uncertainty is inevitable in characterizing any realistic engineering systems. Discussion includes representative methods for addressing major sources of uncertainties in evolutionary computation, including handle of noisy fitness functions, use of approximate fitness functions, search for robust solutions, and tracking moving optimums.

Cellular Learning Automata: Theory and Applications

Cellular Learning Automata: Theory and Applications
Author: Reza Vafashoar
Publisher: Springer Nature
Total Pages: 377
Release: 2020-07-24
Genre: Technology & Engineering
ISBN: 3030531414

This book highlights both theoretical and applied advances in cellular learning automata (CLA), a type of hybrid computational model that has been successfully employed in various areas to solve complex problems and to model, learn, or simulate complicated patterns of behavior. Owing to CLA’s parallel and learning abilities, it has proven to be quite effective in uncertain, time-varying, decentralized, and distributed environments. The book begins with a brief introduction to various CLA models, before focusing on recently developed CLA variants. In turn, the research areas related to CLA are addressed as bibliometric network analysis perspectives. The next part of the book presents CLA-based solutions to several computer science problems in e.g. static optimization, dynamic optimization, wireless networks, mesh networks, and cloud computing. Given its scope, the book is well suited for all researchers in the fields of artificial intelligence and reinforcement learning.

Introduction to Evolutionary Computing

Introduction to Evolutionary Computing
Author: A.E. Eiben
Publisher: Springer Science & Business Media
Total Pages: 328
Release: 2007-08-06
Genre: Computers
ISBN: 9783540401841

The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.

Evolutionary Optimization in Dynamic Environments

Evolutionary Optimization in Dynamic Environments
Author: Jürgen Branke
Publisher: Springer Science & Business Media
Total Pages: 217
Release: 2012-12-06
Genre: Computers
ISBN: 1461509114

Evolutionary Algorithms (EAs) have grown into a mature field of research in optimization, and have proven to be effective and robust problem solvers for a broad range of static real-world optimization problems. Yet, since they are based on the principles of natural evolution, and since natural evolution is a dynamic process in a changing environment, EAs are also well suited to dynamic optimization problems. Evolutionary Optimization in Dynamic Environments is the first comprehensive work on the application of EAs to dynamic optimization problems. It provides an extensive survey on research in the area and shows how EAs can be successfully used to continuously and efficiently adapt a solution to a changing environment, find a good trade-off between solution quality and adaptation cost, find robust solutions whose quality is insensitive to changes in the environment, find flexible solutions which are not only good but that can be easily adapted when necessary. All four aspects are treated in this book, providing a holistic view on the challenges and opportunities when applying EAs to dynamic optimization problems. The comprehensive and up-to-date coverage of the subject, together with details of latest original research, makes Evolutionary Optimization in Dynamic Environments an invaluable resource for researchers and professionals who are dealing with dynamic and stochastic optimization problems, and who are interested in applying local search heuristics, such as evolutionary algorithms.

Applications of Evolutionary Computing

Applications of Evolutionary Computing
Author: Günther R. Raidl
Publisher: Springer
Total Pages: 582
Release: 2004-03-09
Genre: Computers
ISBN: 3540246533

Evolutionary Computation (EC) deals with problem solving, optimization, and machine learning techniques inspired by principles of natural evolution and - netics. Just from this basic de?nition, it is clear that one of the main features of theresearchcommunityinvolvedinthestudyofitstheoryandinitsapplications is multidisciplinarity. For this reason, EC has been able to draw the attention of an ever-increasing number of researchers and practitioners in several ?elds. In its 6-year-long activity, EvoNet, the European Network of Excellence in Evolutionary Computing, has been the natural reference and incubator for that multifaceted community. EvoNet has provided logistic and material support for thosewhowerealreadyinvolvedinECbut,inthe?rstplace,ithashadacritical role in favoring the signi?cant growth of the EC community and its interactions with longer-established ones. The main instrument that has made this possible has been the series of events, ?rst organized in 1998, that have spanned over both theoretical and practical aspects of EC. Ever since 1999, the present format, in which the EvoWorkshops, a collection of workshops on the most application-oriented aspects of EC, act as satellites of a core event, has proven to be very successful and very representative of the multi-disciplinarity of EC. Up to 2003, the core was represented by EuroGP, the main European event dedicated to Genetic Programming. EuroGP has been joined as the main event in 2004 by EvoCOP, formerly part of EvoWorkshops, which has become the European Conference on Evolutionary Computation in Combinatorial Optimization.

Evolutionary Computation in Scheduling

Evolutionary Computation in Scheduling
Author: Amir H. Gandomi
Publisher: John Wiley & Sons
Total Pages: 343
Release: 2020-04-09
Genre: Mathematics
ISBN: 1119573874

Presents current developments in the field of evolutionary scheduling and demonstrates the applicability of evolutionary computational techniques to solving scheduling problems This book provides insight into the use of evolutionary computations (EC) in real-world scheduling, showing readers how to choose a specific evolutionary computation and how to validate the results using metrics and statistics. It offers a spectrum of real-world optimization problems, including applications of EC in industry and service organizations such as healthcare scheduling, aircraft industry, school timetabling, manufacturing systems, and transportation scheduling in the supply chain. It also features problems with different degrees of complexity, practical requirements, user constraints, and MOEC solution approaches. Evolutionary Computation in Scheduling starts with a chapter on scientometric analysis to analyze scientific literature in evolutionary computation in scheduling. It then examines the role and impacts of ant colony optimization (ACO) in job shop scheduling problems, before presenting the application of the ACO algorithm in healthcare scheduling. Other chapters explore task scheduling in heterogeneous computing systems and truck scheduling using swarm intelligence, application of sub-population scheduling algorithm in multi-population evolutionary dynamic optimization, task scheduling in cloud environments, scheduling of robotic disassembly in remanufacturing using the bees algorithm, and more. This book: Provides a representative sampling of real-world problems currently being tackled by practitioners Examines a variety of single-, multi-, and many-objective problems that have been solved using evolutionary computations, including evolutionary algorithms and swarm intelligence Consists of four main parts: Introduction to Scheduling Problems, Computational Issues in Scheduling Problems, Evolutionary Computation, and Evolutionary Computations for Scheduling Problems Evolutionary Computation in Scheduling is ideal for engineers in industries, research scholars, advanced undergraduates and graduate students, and faculty teaching and conducting research in Operations Research and Industrial Engineering.