Prognostics and Health Management of Engineering Systems

Prognostics and Health Management of Engineering Systems
Author: Nam-Ho Kim
Publisher: Springer
Total Pages: 355
Release: 2016-10-24
Genre: Technology & Engineering
ISBN: 3319447424

This book introduces the methods for predicting the future behavior of a system’s health and the remaining useful life to determine an appropriate maintenance schedule. The authors introduce the history, industrial applications, algorithms, and benefits and challenges of PHM (Prognostics and Health Management) to help readers understand this highly interdisciplinary engineering approach that incorporates sensing technologies, physics of failure, machine learning, modern statistics, and reliability engineering. It is ideal for beginners because it introduces various prognostics algorithms and explains their attributes, pros and cons in terms of model definition, model parameter estimation, and ability to handle noise and bias in data, allowing readers to select the appropriate methods for their fields of application.Among the many topics discussed in-depth are:• Prognostics tutorials using least-squares• Bayesian inference and parameter estimation• Physics-based prognostics algorithms including nonlinear least squares, Bayesian method, and particle filter• Data-driven prognostics algorithms including Gaussian process regression and neural network• Comparison of different prognostics algorithms divThe authors also present several applications of prognostics in practical engineering systems, including wear in a revolute joint, fatigue crack growth in a panel, prognostics using accelerated life test data, fatigue damage in bearings, and more. Prognostics tutorials with a Matlab code using simple examples are provided, along with a companion website that presents Matlab programs for different algorithms as well as measurement data. Each chapter contains a comprehensive set of exercise problems, some of which require Matlab programs, making this an ideal book for graduate students in mechanical, civil, aerospace, electrical, and industrial engineering and engineering mechanics, as well as researchers and maintenance engineers in the above fields.

Diagnostics and Prognostics of Engineering Systems: Methods and Techniques

Diagnostics and Prognostics of Engineering Systems: Methods and Techniques
Author: Kadry, Seifedine
Publisher: IGI Global
Total Pages: 461
Release: 2012-09-30
Genre: Technology & Engineering
ISBN: 146662096X

Industrial Prognostics predicts an industrial system’s lifespan using probability measurements to determine the way a machine operates. Prognostics are essential in determining being able to predict and stop failures before they occur. Therefore the development of dependable prognostic procedures for engineering systems is important to increase the system’s performance and reliability. Diagnostics and Prognostics of Engineering Systems: Methods and Techniques provides widespread coverage and discussions on the methods and techniques of diagnosis and prognosis systems. Including practical examples to display the method’s effectiveness in real-world applications as well as the latest trends and research, this reference source aims to introduce fundamental theory and practice for system diagnosis and prognosis.

From Prognostics and Health Systems Management to Predictive Maintenance 1

From Prognostics and Health Systems Management to Predictive Maintenance 1
Author: Rafael Gouriveau
Publisher: John Wiley & Sons
Total Pages: 187
Release: 2016-10-14
Genre: Technology & Engineering
ISBN: 1119371023

This book addresses the steps needed to monitor health assessment systems and the anticipation of their failures: choice and location of sensors, data acquisition and processing, health assessment and prediction of the duration of residual useful life. The digital revolution and mechatronics foreshadowed the advent of the 4.0 industry where equipment has the ability to communicate. The ubiquity of sensors (300,000 sensors in the new generations of aircraft) produces a flood of data requiring us to give meaning to information and leads to the need for efficient processing and a relevant interpretation. The process of traceability and capitalization of data is a key element in the context of the evolution of the maintenance towards predictive strategies.

Intelligent Fault Diagnosis and Prognosis for Engineering Systems

Intelligent Fault Diagnosis and Prognosis for Engineering Systems
Author: George Vachtsevanos
Publisher: Wiley
Total Pages: 0
Release: 2006-09-29
Genre: Technology & Engineering
ISBN: 9780471729990

Expert guidance on theory and practice in condition-based intelligent machine fault diagnosis and failure prognosis Intelligent Fault Diagnosis and Prognosis for Engineering Systems gives a complete presentation of basic essentials of fault diagnosis and failure prognosis, and takes a look at the cutting-edge discipline of intelligent fault diagnosis and failure prognosis technologies for condition-based maintenance. It thoroughly details the interdisciplinary methods required to understand the physics of failure mechanisms in materials, structures, and rotating equipment, and also presents strategies to detect faults or incipient failures and predict the remaining useful life of failing components. Case studies are used throughout the book to illustrate enabling technologies. Intelligent Fault Diagnosis and Prognosis for Engineering Systems offers material in a holistic and integrated approach that addresses the various interdisciplinary components of the field--from electrical, mechanical, industrial, and computer engineering to business management. This invaluably helpful book: * Includes state-of-the-art algorithms, methodologies, and contributions from leading experts, including cost-benefit analysis tools and performance assessment techniques * Covers theory and practice in a way that is rooted in industry research and experience * Presents the only systematic, holistic approach to a strongly interdisciplinary topic

Intelligent Prognostics for Engineering Systems with Machine Learning Techniques

Intelligent Prognostics for Engineering Systems with Machine Learning Techniques
Author: Gunjan Soni
Publisher: CRC Press
Total Pages: 252
Release: 2023-09-19
Genre: Technology & Engineering
ISBN: 1000954102

The text discusses the latest data-driven, physics-based, and hybrid approaches employed in each stage of industrial prognostics and reliability estimation. It will be a useful text for senior undergraduate, graduate students, and academic researchers in areas such as industrial and production engineering, electrical engineering, and computer science. The book Discusses basic as well as advance research in the field of prognostics. Explores integration of data collection, fault detection, degradation modeling and reliability prediction in one volume. Covers prognostics and health management (PHM) of engineering systems. Discusses latest approaches in the field of prognostics based on machine learning. The text deals with tools and techniques used to predict/ extrapolate/ forecast the process behavior, based on current health state assessment and future operating conditions with the help of Machine learning. It will serve as a useful reference text for senior undergraduate, graduate students, and academic researchers in areas such as industrial and production engineering, manufacturing science, electrical engineering, and computer science.

Prognostics and Health Management

Prognostics and Health Management
Author: Douglas Goodman
Publisher: John Wiley & Sons
Total Pages: 386
Release: 2019-04-01
Genre: Technology & Engineering
ISBN: 1119356695

A comprehensive guide to the application and processing of condition-based data to produce prognostic estimates of functional health and life. Prognostics and Health Management provides an authoritative guide for an understanding of the rationale and methodologies of a practical approach for improving system reliability using conditioned-based data (CBD) to the monitoring and management of health of systems. This proven approach uses electronic signatures extracted from conditioned-based electrical signals, including those representing physical components, and employs processing methods that include data fusion and transformation, domain transformation, and normalization, canonicalization and signal-level translation to support the determination of predictive diagnostics and prognostics. Written by noted experts in the field, Prognostics and Health Management clearly describes how to extract signatures from conditioned-based data using conditioning methods such as data fusion and transformation, domain transformation, data type transformation and indirect and differential comparison. This important resource: Integrates data collecting, mathematical modelling and reliability prediction in one volume Contains numerical examples and problems with solutions that help with an understanding of the algorithmic elements and processes Presents information from a panel of experts on the topic Follows prognostics based on statistical modelling, reliability modelling and usage modelling methods Written for system engineers working in critical process industries and automotive and aerospace designers, Prognostics and Health Management offers a guide to the application of condition-based data to produce signatures for input to predictive algorithms to produce prognostic estimates of functional health and life.

Digital Twin Driven Smart Manufacturing

Digital Twin Driven Smart Manufacturing
Author: Fei Tao
Publisher: Academic Press
Total Pages: 283
Release: 2019-02-07
Genre: Technology & Engineering
ISBN: 0128176318

Digital Twin Driven Smart Manufacturing examines the background, latest research, and application models for digital twin technology, and shows how it can be central to a smart manufacturing process.The interest in digital twin in manufacturing is driven by a need for excellent product reliability, and an overall trend towards intelligent, and connected manufacturing systems. This book provides an ideal entry point to this subject for readers in industry and academia, as it answers the questions: (a) What is a digital twin? (b) How to construct a digital twin? (c) How to use a digital twin to improve manufacturing efficiency? (d) What are the essential activities in the implementation of a digital twin? (e) What are the most important obstacles to overcome for the successful deployment of a digital twin? (f) What are the relations between digital twin and New Technologies? (g) How to combine digital twin with the New Technologies to achieve high efficiency and smartness in manufacturing?This book focuses on these problems as it aims to help readers make the best use of digital twin technology towards smart manufacturing. - Analyzes the differences, synergies and possibilities for integration between digital twin technology and other technologies, such as big data, service and Internet of Things - Discuss new requirements for a traditional three-dimension digital twin and proposes a methodology for a five-dimension version - Investigates new models for optimized manufacturing, prognostics and health management, and cyber-physical fusion based on the digital twin

Prognostics

Prognostics
Author: Kai Goebel
Publisher: Createspace Independent Publishing Platform
Total Pages: 396
Release: 2017-04-03
Genre: Engineering systems
ISBN: 9781539074830

Prognostics is the science of making predictions of engineering systems. It is part of a suite of techniques that determine whether a system is behaving within nominal operational performance and - if it does not - that determine what is wrong and how long it will take until the system no longer fulfills certain functional requirements. This book presents the latest developments and research findings on the topic of prognostics by the Prognostics Center of Excellence at NASA Ames Research Center. The book is intended to provide a practitioner with an understanding of the foundational concepts as well as practical tools to perform prognostics and health management on different types of engineering systems and in particular to predict remaining useful life.

Probabilistic Prognostics and Health Management of Energy Systems

Probabilistic Prognostics and Health Management of Energy Systems
Author: Stephen Ekwaro-Osire
Publisher: Springer
Total Pages: 273
Release: 2017-04-25
Genre: Technology & Engineering
ISBN: 3319558528

This book proposes the formulation of an efficient methodology that estimates energy system uncertainty and predicts Remaining Useful Life (RUL) accurately with significantly reduced RUL prediction uncertainty. Renewable and non-renewable sources of energy are being used to supply the demands of societies worldwide. These sources are mainly thermo-chemo-electro-mechanical systems that are subject to uncertainty in future loading conditions, material properties, process noise, and other design parameters.It book informs the reader of existing and new ideas that will be implemented in RUL prediction of energy systems in the future. The book provides case studies, illustrations, graphs, and charts. Its chapters consider engineering, reliability, prognostics and health management, probabilistic multibody dynamical analysis, peridynamic and finite-element modelling, computer science, and mathematics.

Prognostics and Health Management of Electronics

Prognostics and Health Management of Electronics
Author: Michael G. Pecht
Publisher: John Wiley & Sons
Total Pages: 973
Release: 2018-08-21
Genre: Technology & Engineering
ISBN: 1119515351

An indispensable guide for engineers and data scientists in design, testing, operation, manufacturing, and maintenance A road map to the current challenges and available opportunities for the research and development of Prognostics and Health Management (PHM), this important work covers all areas of electronics and explains how to: assess methods for damage estimation of components and systems due to field loading conditions assess the cost and benefits of prognostic implementations develop novel methods for in situ monitoring of products and systems in actual life-cycle conditions enable condition-based (predictive) maintenance increase system availability through an extension of maintenance cycles and/or timely repair actions; obtain knowledge of load history for future design, qualification, and root cause analysis reduce the occurrence of no fault found (NFF) subtract life-cycle costs of equipment from reduction in inspection costs, downtime, and inventory Prognostics and Health Management of Electronics also explains how to understand statistical techniques and machine learning methods used for diagnostics and prognostics. Using this valuable resource, electrical engineers, data scientists, and design engineers will be able to fully grasp the synergy between IoT, machine learning, and risk assessment.