TinyML

TinyML
Author: Pete Warden
Publisher: O'Reilly Media
Total Pages: 504
Release: 2019-12-16
Genre: Computers
ISBN: 1492052019

Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size

Deep Learning on Microcontrollers

Deep Learning on Microcontrollers
Author: Atul Krishna Gupta
Publisher: BPB Publications
Total Pages: 346
Release: 2023-04-15
Genre: Computers
ISBN: 9355518056

A step-by-step guide that will teach you how to deploy TinyML on microcontrollers KEY FEATURES ● Deploy machine learning models on edge devices with ease. ● Leverage pre-built AI models and deploy them without writing any code. ● Create smart and efficient IoT solutions with TinyML. DESCRIPTION TinyML, or Tiny Machine Learning, is used to enable machine learning on resource-constrained devices, such as microcontrollers and embedded systems. If you want to leverage these low-cost, low-power but strangely powerful devices, then this book is for you. This book aims to increase accessibility to TinyML applications, particularly for professionals who lack the resources or expertise to develop and deploy them on microcontroller-based boards. The book starts by giving a brief introduction to Artificial Intelligence, including classical methods for solving complex problems. It also familiarizes you with the different ML model development and deployment tools, libraries, and frameworks suitable for embedded devices and microcontrollers. The book will then help you build an Air gesture digit recognition system using the Arduino Nano RP2040 board and an AI project for recognizing keywords using the Syntiant TinyML board. Lastly, the book summarizes the concepts covered and provides a brief introduction to topics such as zero-shot learning, one-shot learning, federated learning, and MLOps. By the end of the book, you will be able to develop and deploy end-to-end Tiny ML solutions with ease. WHAT YOU WILL LEARN ● Learn how to build a Keyword recognition system using the Syntiant TinyML board. ● Learn how to build an air gesture digit recognition system using the Arduino Nano RP2040. ● Learn how to test and deploy models on Edge Impulse and Arduino IDE. ● Get tips to enhance system-level performance. ● Explore different real-world use cases of TinyML across various industries. WHO THIS BOOK IS FOR The book is for IoT developers, System engineers, Software engineers, Hardware engineers, and professionals who are interested in integrating AI into their work. This book is a valuable resource for Engineering undergraduates who are interested in learning about microcontrollers and IoT devices but may not know where to begin. TABLE OF CONTENTS 1. Introduction to AI 2. Traditional ML Lifecycle 3. TinyML Hardware and Software Platforms 4. End-to-End TinyML Deployment Phases 5. Real World Use Cases 6. Practical Experiments with TinyML 7. Advance Implementation with TinyML Board 8. Continuous Improvement 9. Conclusion

Machine Learning for Kids

Machine Learning for Kids
Author: Dale Lane
Publisher: No Starch Press
Total Pages: 290
Release: 2021-01-19
Genre: Computers
ISBN: 1718500572

A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+

Practical Deep Learning for Cloud, Mobile, and Edge

Practical Deep Learning for Cloud, Mobile, and Edge
Author: Anirudh Koul
Publisher: "O'Reilly Media, Inc."
Total Pages: 585
Release: 2019-10-14
Genre: Computers
ISBN: 1492034819

Whether you’re a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the next viral AI app, you might have wondered where to begin. This step-by-step guide teaches you how to build practical deep learning applications for the cloud, mobile, browsers, and edge devices using a hands-on approach. Relying on years of industry experience transforming deep learning research into award-winning applications, Anirudh Koul, Siddha Ganju, and Meher Kasam guide you through the process of converting an idea into something that people in the real world can use. Train, tune, and deploy computer vision models with Keras, TensorFlow, Core ML, and TensorFlow Lite Develop AI for a range of devices including Raspberry Pi, Jetson Nano, and Google Coral Explore fun projects, from Silicon Valley’s Not Hotdog app to 40+ industry case studies Simulate an autonomous car in a video game environment and build a miniature version with reinforcement learning Use transfer learning to train models in minutes Discover 50+ practical tips for maximizing model accuracy and speed, debugging, and scaling to millions of users

Making Embedded Systems

Making Embedded Systems
Author: Elecia White
Publisher: "O'Reilly Media, Inc."
Total Pages: 329
Release: 2011-10-25
Genre: Computers
ISBN: 1449320589

Interested in developing embedded systems? Since they donâ??t tolerate inefficiency, these systems require a disciplined approach to programming. This easy-to-read guide helps you cultivate a host of good development practices, based on classic software design patterns and new patterns unique to embedded programming. Learn how to build system architecture for processors, not operating systems, and discover specific techniques for dealing with hardware difficulties and manufacturing requirements. Written by an expert whoâ??s created embedded systems ranging from urban surveillance and DNA scanners to childrenâ??s toys, this book is ideal for intermediate and experienced programmers, no matter what platform you use. Optimize your system to reduce cost and increase performance Develop an architecture that makes your software robust in resource-constrained environments Explore sensors, motors, and other I/O devices Do more with less: reduce RAM consumption, code space, processor cycles, and power consumption Learn how to update embedded code directly in the processor Discover how to implement complex mathematics on small processors Understand what interviewers look for when you apply for an embedded systems job "Making Embedded Systems is the book for a C programmer who wants to enter the fun (and lucrative) world of embedded systems. Itâ??s very well writtenâ??entertaining, evenâ??and filled with clear illustrations." â??Jack Ganssle, author and embedded system expert.

Low-Power Computer Vision

Low-Power Computer Vision
Author: George K. Thiruvathukal
Publisher: CRC Press
Total Pages: 395
Release: 2022-02-22
Genre: Computers
ISBN: 1000540960

Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.

Practical Rust Projects

Practical Rust Projects
Author: Shing Lyu
Publisher: Apress
Total Pages: 265
Release: 2020-02-27
Genre: Computers
ISBN: 1484255992

Go beyond the basics and build complete applications using the Rust programming language. The applications in this book include a high-performance web client, a microcontroller (for a robot, for example), a game, an app that runs on Android, and an application that incorporates AI and machine learning. Each chapter will be organized in the following format: what this kind of application looks like; requirements and user stories of our example program; an introduction to the Rust libraries used; the actual implementation of the example program, including common pitfalls and their solutions; and a brief comparison of libraries for building each application, if there is no clear winner. Practical Rust Projects will open your eyes to the world of practical applications of Rust. After reading the book, you will be able to apply your Rust knowledge to build your own projects. What You Will Learn Write Rust code that runs on microcontrollers Build a 2D game Create Rust-based mobile Android applications Use Rust to build AI and machine learning applications Who This Book Is For Someone with basic Rust knowledge, wishing to learn more about how to apply Rust in a real-world scenario.

Embedded Systems with Arm Cortex-M Microcontrollers in Assembly Language and C: Third Edition

Embedded Systems with Arm Cortex-M Microcontrollers in Assembly Language and C: Third Edition
Author: Yifeng Zhu
Publisher:
Total Pages: 736
Release: 2017-07
Genre: Computers
ISBN: 9780982692660

This book introduces basic programming of ARM Cortex chips in assembly language and the fundamentals of embedded system design. It presents data representations, assembly instruction syntax, implementing basic controls of C language at the assembly level, and instruction encoding and decoding. The book also covers many advanced components of embedded systems, such as software and hardware interrupts, general purpose I/O, LCD driver, keypad interaction, real-time clock, stepper motor control, PWM input and output, digital input capture, direct memory access (DMA), digital and analog conversion, and serial communication (USART, I2C, SPI, and USB).