Deep Learning Models For Medical Imaging
Download Deep Learning Models For Medical Imaging full books in PDF, epub, and Kindle. Read online free Deep Learning Models For Medical Imaging ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : KC Santosh |
Publisher | : Academic Press |
Total Pages | : 172 |
Release | : 2021-09-07 |
Genre | : Computers |
ISBN | : 0128236507 |
Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow 'with' and 'without' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists. - Provides a step-by-step approach to develop deep learning models - Presents case studies showing end-to-end implementation (source codes: available upon request)
Author | : S. Kevin Zhou |
Publisher | : Academic Press |
Total Pages | : 544 |
Release | : 2023-11-23 |
Genre | : Computers |
ISBN | : 0323858880 |
Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache
Author | : Saxena, Sanjay |
Publisher | : IGI Global |
Total Pages | : 274 |
Release | : 2020-10-16 |
Genre | : Medical |
ISBN | : 1799850722 |
Before the modern age of medicine, the chance of surviving a terminal disease such as cancer was minimal at best. After embracing the age of computer-aided medical analysis technologies, however, detecting and preventing individuals from contracting a variety of life-threatening diseases has led to a greater survival percentage and increased the development of algorithmic technologies in healthcare. Deep Learning Applications in Medical Imaging is a pivotal reference source that provides vital research on the application of generating pictorial depictions of the interior of a body for medical intervention and clinical analysis. While highlighting topics such as artificial neural networks, disease prediction, and healthcare analysis, this publication explores image acquisition and pattern recognition as well as the methods of treatment and care. This book is ideally designed for diagnosticians, medical imaging specialists, healthcare professionals, physicians, medical researchers, academicians, and students.
Author | : Gobert Lee |
Publisher | : Springer Nature |
Total Pages | : 184 |
Release | : 2020-02-06 |
Genre | : Medical |
ISBN | : 3030331288 |
This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.
Author | : Zhengchao Dong |
Publisher | : |
Total Pages | : 458 |
Release | : 2021 |
Genre | : |
ISBN | : 9783036514703 |
The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis.
Author | : Le Lu |
Publisher | : Springer |
Total Pages | : 327 |
Release | : 2017-07-12 |
Genre | : Computers |
ISBN | : 331942999X |
This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.
Author | : Zaman, Noor |
Publisher | : IGI Global |
Total Pages | : 293 |
Release | : 2022-02-25 |
Genre | : Computers |
ISBN | : 1799889300 |
The recent advancements in the machine learning paradigm have various applications, specifically in the field of medical data analysis. Research has proven the high accuracy of deep learning algorithms, and they have become a standard choice for analyzing medical data, especially medical images, video, and electronic health records. Deep learning methods applied to electronic health records are contributing to understanding the evolution of chronic diseases and predicting the risk of developing those diseases. Approaches and Applications of Deep Learning in Virtual Medical Care considers the applications of deep learning in virtual medical care and delves into complex deep learning algorithms, calibrates models, and improves the predictions of the trained model on medical imaging. Covering topics such as big data and medical sensors, this critical reference source is ideal for researchers, academicians, practitioners, industry professionals, hospital workers, scholars, instructors, and students.
Author | : Erik R. Ranschaert |
Publisher | : Springer |
Total Pages | : 369 |
Release | : 2019-01-29 |
Genre | : Medical |
ISBN | : 3319948784 |
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Author | : Valentina Emilia Balas |
Publisher | : Academic Press |
Total Pages | : 322 |
Release | : 2020-11-12 |
Genre | : Science |
ISBN | : 0128230479 |
Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography
Author | : K.C. Santosh |
Publisher | : CRC Press |
Total Pages | : 251 |
Release | : 2019-08-20 |
Genre | : Computers |
ISBN | : 0429642490 |
Winner of the "Outstanding Academic Title" recognition by Choice for the 2020 OAT Awards. The Choice OAT Award represents the highest caliber of scholarly titles that have been reviewed by Choice and conveys the extraordinary recognition of the academic community. The book discusses varied topics pertaining to advanced or up-to-date techniques in medical imaging using artificial intelligence (AI), image recognition (IR) and machine learning (ML) algorithms/techniques. Further, coverage includes analysis of chest radiographs (chest x-rays) via stacked generalization models, TB type detection using slice separation approach, brain tumor image segmentation via deep learning, mammogram mass separation, epileptic seizures, breast ultrasound images, knee joint x-ray images, bone fracture detection and labeling, and diabetic retinopathy. It also reviews 3D imaging in biomedical applications and pathological medical imaging.