Deep Learning For Numerical Applications With Sas
Download Deep Learning For Numerical Applications With Sas full books in PDF, epub, and Kindle. Read online free Deep Learning For Numerical Applications With Sas ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Henry Bequet |
Publisher | : SAS Institute |
Total Pages | : 254 |
Release | : 2018-07-20 |
Genre | : Computers |
ISBN | : 1635266777 |
Foreword by Oliver Schabenberger, PhD Executive Vice President, Chief Operating Officer and Chief Technology Officer SAS Dive into deep learning! Machine learning and deep learning are ubiquitous in our homes and workplaces—from machine translation to image recognition and predictive analytics to autonomous driving. Deep learning holds the promise of improving many everyday tasks in a variety of disciplines. Much deep learning literature explains the mechanics of deep learning with the goal of implementing cognitive applications fueled by Big Data. This book is different. Written by an expert in high-performance analytics, Deep Learning for Numerical Applications with SAS introduces a new field: Deep Learning for Numerical Applications (DL4NA). Contrary to deep learning, the primary goal of DL4NA is not to learn from data but to dramatically improve the performance of numerical applications by training deep neural networks. Deep Learning for Numerical Applications with SAS presents deep learning concepts in SAS along with step-by-step techniques that allow you to easily reproduce the examples on your high-performance analytics systems. It also discusses the latest hardware innovations that can power your SAS programs: from many-core CPUs to GPUs to FPGAs to ASICs. This book assumes the reader has no prior knowledge of high-performance computing, machine learning, or deep learning. It is intended for SAS developers who want to develop and run the fastest analytics. In addition to discovering the latest trends in hybrid architectures with GPUs and FPGAS, readers will learn how to Use deep learning in SAS Speed up their analytics using deep learning Easily write highly parallel programs using the many task computing paradigms This book is part of the SAS Press program.
Author | : Sas Education |
Publisher | : |
Total Pages | : 126 |
Release | : 2020-01-10 |
Genre | : Computers |
ISBN | : 9781642955880 |
SAS Visual Data Mining and Machine Learning, powered by SAS Viya, means that users of all skill levels can visually explore data on their own while drawing on powerful in-memory technologies for faster analytic computations and discoveries. You can manually program with custom code or use the features in SAS Studio, Model Studio, and SAS Visual Analytics to automate your data manipulation and modeling. These programs offer a flexible, easy-to-use, self-service environment that can scale on an enterprise-wide level. In this book, we will explore some of the many features of SAS Visual Data Mining and Machine Learning including: programming in the Python interface; new, advanced data mining and machine learning procedures; pipeline building in Model Studio, and model building and comparison in SAS Visual Analytics.
Author | : SAS Institute Inc. |
Publisher | : SAS Institute |
Total Pages | : 309 |
Release | : 2020-05-29 |
Genre | : Computers |
ISBN | : 1951685377 |
Master machine learning with SAS Viya! Machine learning can feel intimidating for new practitioners. Machine Learning with SAS Viya provides everything you need to know to get started with machine learning in SAS Viya, including decision trees, neural networks, and support vector machines. The analytics life cycle is covered from data preparation and discovery to deployment. Working with open-source code? Machine Learning with SAS Viya has you covered – step-by-step instructions are given on how to use SAS Model Manager tools with open source. SAS Model Studio features are highlighted to show how to carry out machine learning in SAS Viya. Demonstrations, practice tasks, and quizzes are included to help sharpen your skills. In this book, you will learn about: Supervised and unsupervised machine learning Data preparation and dealing with missing and unstructured data Model building and selection Improving and optimizing models Model deployment and monitoring performance
Author | : |
Publisher | : |
Total Pages | : 74 |
Release | : 2020-08-31 |
Genre | : |
ISBN | : 9781952363184 |
Natural Language Processing (NLP) is a branch of artificial intelligence that helps computers understand, interpret, and emulate written or spoken human language. NLP draws from many disciplines including human-generated linguistic rules, machine learning, and deep learning to fill the gap between human communication and machine understanding. The papers included in this special collection demonstrate how NLP can be used to scale the human act of reading, organizing, and quantifying text data.
Author | : |
Publisher | : |
Total Pages | : 108 |
Release | : 2019-06-14 |
Genre | : |
ISBN | : 9781642954821 |
SAS provides many different solutions to investigate and analyze text and operationalize decisioning. Several impressive papers have been written to demonstrate how to use these techniques. We have carefully selected a handful of these from recent Global Forum contributions to introduce you to the topic and let you sample what each has to offer. Also available free as a PDF from sas.com/books.
Author | : |
Publisher | : |
Total Pages | : 168 |
Release | : 2019-06-21 |
Genre | : |
ISBN | : 9781642954760 |
Machine learning is a branch of artificial intelligence (AI) that develops algorithms that allow computers to learn from examples without being explicitly programmed. Machine learning identifies patterns in the data and models the results. These descriptive models enable a better understanding of the underlying insights the data offers. Machine learning is a powerful tool with many applications, from real-time fraud detection, the Internet of Things (IoT), recommender systems, and smart cars. It will not be long before some form of machine learning is integrated into all machines, augmenting the user experience and automatically running many processes intelligently. SAS offers many different solutions to use machine learning to model and predict your data. The papers included in this special collection demonstrate how cutting-edge machine learning techniques can benefit your data analysis. Also available free as a PDF from sas.com/books.
Author | : Babatunde O Odusami |
Publisher | : SAS Institute |
Total Pages | : 405 |
Release | : 2024-06-14 |
Genre | : Computers |
ISBN | : 1685800157 |
Explore financial data science using SAS. Financial Data Science with SAS provides readers with a comprehensive explanation of the theoretical and practical implementation of the various types of analytical techniques and quantitative tools that are used in the financial services industry. This book shows readers how to implement data visualization, simulation, statistical predictive models, machine learning models, and financial optimizations using real-world examples in the SAS Analytics environment. Each chapter ends with practice exercises that include use case scenarios to allow readers to test their knowledge. Designed for university students and financial professionals interested in boosting their data science skills, Financial Data Science with SAS is an essential reference guide for understanding how data science is used in the financial services industry and for learning how to use SAS to solve complex business problems.
Author | : Dr. Goutam Chakraborty |
Publisher | : SAS Institute |
Total Pages | : 340 |
Release | : 2014-11-22 |
Genre | : Computers |
ISBN | : 1612907873 |
Big data: It's unstructured, it's coming at you fast, and there's lots of it. In fact, the majority of big data is text-oriented, thanks to the proliferation of online sources such as blogs, emails, and social media. However, having big data means little if you can't leverage it with analytics. Now you can explore the large volumes of unstructured text data that your organization has collected with Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS. This hands-on guide to text analytics using SAS provides detailed, step-by-step instructions and explanations on how to mine your text data for valuable insight. Through its comprehensive approach, you'll learn not just how to analyze your data, but how to collect, cleanse, organize, categorize, explore, and interpret it as well. Text Mining and Analysis also features an extensive set of case studies, so you can see examples of how the applications work with real-world data from a variety of industries. Text analytics enables you to gain insights about your customers' behaviors and sentiments. Leverage your organization's text data, and use those insights for making better business decisions with Text Mining and Analysis. This book is part of the SAS Press program.
Author | : Sas Education |
Publisher | : |
Total Pages | : 110 |
Release | : 2019-06-28 |
Genre | : |
ISBN | : 9781642954906 |
Data visualization enables decision makers to see analytics presented visually so that they can grasp difficult concepts or identify new patterns. SAS offers several solutions for visualizing your data, many of which are powered by SAS Viya. This book includes four visualization solutions powered by SAS Viya: SAS Visual Analytics, SAS Visual Statistics, SAS Visual Text Analytics, and SAS Visual Investigator. SAS visualization software is designed for anyone in your organization who wants to use and derive insights from data-from influencers, decision makers, and analysts to statisticians and data scientists. Also available as a free e-book from sas.com/books.
Author | : |
Publisher | : |
Total Pages | : 148 |
Release | : 2020-07 |
Genre | : Computers |
ISBN | : 9781970170818 |
Turn analytical models into business value and smarter decisions with this special collection of papers about SAS Model Management. Without a structured and standardized process to integrate and coordinate all the different pieces of the model life cycle, a business can experience increased costs and missed opportunities. SAS Model Management solutions enable organizations to register, test, deploy, monitor, and retrain analytical models, leveraging any available technology - including open-source models in Python, R, and TensorFlow -into a competitive advantage.