Deep Dive Into Financial Models
Download Deep Dive Into Financial Models full books in PDF, epub, and Kindle. Read online free Deep Dive Into Financial Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Mathieu Le Bellac |
Publisher | : World Scientific Publishing Company |
Total Pages | : 232 |
Release | : 2016-11-14 |
Genre | : Business & Economics |
ISBN | : 981314212X |
Since 2007, the repeated financial crises around the world have brought to the headlines financial practices and models considered to fuel the economic instabilities. Deep Dive into Financial Models: Modeling Risk and Uncertainty comes handy in demystifying the underlying quantitative finance concepts. With a limited use of mathematical formalism, the book explains thoroughly the models, their hypotheses, principles and other building blocks. A particular care is given to model limitations and their misuse for investment strategies, asset pricing, or risk management. Its reader-friendly nature provides readers with a head start in quantitative finance.
Author | : Anand Vemula |
Publisher | : Anand Vemula |
Total Pages | : 67 |
Release | : |
Genre | : Computers |
ISBN | : |
"Large Language Models in Finance: A Deep Dive" offers an insightful exploration into the application of advanced language models within the finance sector. This book delves into the transformative impact of large language models (LLMs) on various aspects of finance, offering a comprehensive overview suitable for both novices and experts in the field. Through the lens of LLMs, readers gain a deeper understanding of how natural language processing (NLP) techniques are revolutionizing financial operations. The book begins by elucidating the significance of LLMs in finance, highlighting their role in tasks such as sentiment analysis, financial forecasting, risk management, and fraud detection. With a focus on practical applications, "Large Language Models in Finance" provides insights into how LLMs are utilized for sentiment analysis, enabling financial professionals to gauge market sentiment and make informed investment decisions. It further explores their role in financial forecasting and predictions, facilitating the development of quantitative trading strategies and enhancing decision-making processes. The book also delves into the crucial aspect of risk management and compliance, showcasing how LLMs aid in identifying potential risks, automating compliance checks, and ensuring adherence to regulatory requirements. Readers gain valuable insights into the ethical considerations surrounding the use of LLMs in finance, including data privacy, bias mitigation, and the responsible deployment of AI technologies. Moreover, "Large Language Models in Finance" offers practical guidance on leveraging LLMs for financial reporting, analysis, and automation, enabling organizations to streamline processes and derive actionable insights from vast amounts of data. The book concludes with a forward-looking perspective, exploring emerging trends, future innovations, and the evolving landscape of LLMs in finance. In summary, "Large Language Models in Finance: A Deep Dive" serves as a comprehensive guide for anyone interested in understanding the transformative potential of LLMs in the finance industry. With its accessible language, practical examples, and forward-thinking insights, this book is essential reading for finance professionals, researchers, and enthusiasts alike.
Author | : Paul Pignataro |
Publisher | : John Wiley & Sons |
Total Pages | : 432 |
Release | : 2013-07-10 |
Genre | : Business & Economics |
ISBN | : 1118558766 |
Written by the Founder and CEO of the prestigious New York School of Finance, this book schools you in the fundamental tools for accurately assessing the soundness of a stock investment. Built around a full-length case study of Wal-Mart, it shows you how to perform an in-depth analysis of that company's financial standing, walking you through all the steps of developing a sophisticated financial model as done by professional Wall Street analysts. You will construct a full scale financial model and valuation step-by-step as you page through the book. When we ran this analysis in January of 2012, we estimated the stock was undervalued. Since the first run of the analysis, the stock has increased 35 percent. Re-evaluating Wal-Mart 9months later, we will step through the techniques utilized by Wall Street analysts to build models on and properly value business entities. Step-by-step financial modeling - taught using downloadable Wall Street models, you will construct the model step by step as you page through the book. Hot keys and explicit Excel instructions aid even the novice excel modeler. Model built complete with Income Statement, Cash Flow Statement, Balance Sheet, Balance Sheet Balancing Techniques, Depreciation Schedule (complete with accelerating depreciation and deferring taxes), working capital schedule, debt schedule, handling circular references, and automatic debt pay downs. Illustrative concepts including detailing model flows help aid in conceptual understanding. Concepts are reiterated and honed, perfect for a novice yet detailed enough for a professional. Model built direct from Wal-Mart public filings, searching through notes, performing research, and illustrating techniques to formulate projections. Includes in-depth coverage of valuation techniques commonly used by Wall Street professionals. Illustrative comparable company analyses - built the right way, direct from historical financials, calculating LTM (Last Twelve Month) data, calendarization, and properly smoothing EBITDA and Net Income. Precedent transactions analysis - detailing how to extract proper metrics from relevant proxy statements Discounted cash flow analysis - simplifying and illustrating how a DCF is utilized, how unlevered free cash flow is derived, and the meaning of weighted average cost of capital (WACC) Step-by-step we will come up with a valuation on Wal-Mart Chapter end questions, practice models, additional case studies and common interview questions (found in the companion website) help solidify the techniques honed in the book; ideal for universities or business students looking to break into the investment banking field.
Author | : Peter Tankov |
Publisher | : CRC Press |
Total Pages | : 552 |
Release | : 2003-12-30 |
Genre | : Business & Economics |
ISBN | : 1135437947 |
WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic
Author | : Anurag Singal |
Publisher | : Business Expert Press |
Total Pages | : 138 |
Release | : 2018-09-10 |
Genre | : Business & Economics |
ISBN | : 1948976951 |
The book will help readers dive deep into the vocabulary and the syntax, the art and science of financial modeling and valuation. To use a cliché, we live in a volatile uncertain complex and ambiguous (VUCA) world. Organizations simply cannot afford to try out new strategies in reality and correct mistakes, once they’ve occurred. The stakes are too high. Thus emerges the utility of this technique across functions like financial planning and risk management. Financial models help a business manager simulate the future and see the impact of their change, without risking costly setbacks of real world trials and errors. Mastering the art of financial modeling is imperative for those who want to enter the ultra-competitive world of corporate finance, investment banking, private equity, or equity research. Only those who excel (pun intended) in modeling early on are often the most successful long- term. Readers will be able to prepare/use existing models more competently, interpret the results and have greater comfort over the integrity and accuracy of the model’s calculations.
Author | : Marcos Lopez de Prado |
Publisher | : John Wiley & Sons |
Total Pages | : 395 |
Release | : 2018-01-23 |
Genre | : Business & Economics |
ISBN | : 1119482119 |
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Author | : Abdullah Karasan |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 334 |
Release | : 2021-12-07 |
Genre | : Computers |
ISBN | : 1492085200 |
Financial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial analysts, risk analysts, and quantitative and algorithmic analysts will examine Python-based machine learning and deep learning models for assessing financial risk. Building hands-on AI-based financial modeling skills, you'll learn how to replace traditional financial risk models with ML models. Author Abdullah Karasan helps you explore the theory behind financial risk modeling before diving into practical ways of employing ML models in modeling financial risk using Python. With this book, you will: Review classical time series applications and compare them with deep learning models Explore volatility modeling to measure degrees of risk, using support vector regression, neural networks, and deep learning Improve market risk models (VaR and ES) using ML techniques and including liquidity dimension Develop a credit risk analysis using clustering and Bayesian approaches Capture different aspects of liquidity risk with a Gaussian mixture model and Copula model Use machine learning models for fraud detection Predict stock price crash and identify its determinants using machine learning models
Author | : Mary Jackson |
Publisher | : John Wiley & Sons |
Total Pages | : 278 |
Release | : 2006-08-30 |
Genre | : Business & Economics |
ISBN | : 0470061669 |
This new and unique book demonstrates that Excel and VBA can play an important role in the explanation and implementation of numerical methods across finance. Advanced Modelling in Finance provides a comprehensive look at equities, options on equities and options on bonds from the early 1950s to the late 1990s. The book adopts a step-by-step approach to understanding the more sophisticated aspects of Excel macros and VBA programming, showing how these programming techniques can be used to model and manipulate financial data, as applied to equities, bonds and options. The book is essential for financial practitioners who need to develop their financial modelling skill sets as there is an increase in the need to analyse and develop ever more complex 'what if' scenarios. Specifically applies Excel and VBA to the financial markets Packaged with a CD containing the software from the examples throughout the book Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
Author | : George Wilton |
Publisher | : Az Boek |
Total Pages | : 50 |
Release | : 2024-04-27 |
Genre | : Social Science |
ISBN | : 6256315855 |
Author | : Ali Hirsa |
Publisher | : CRC Press |
Total Pages | : 644 |
Release | : 2024-08-30 |
Genre | : Business & Economics |
ISBN | : 1498778615 |
Computational Methods in Finance is a book developed from the author’s courses at Columbia University and the Courant Institute of New York University. This self-contained text is designed for graduate students in financial engineering and mathematical finance, as well as practitioners in the financial industry. It will help readers accurately price a vast array of derivatives. This new edition has been thoroughly revised throughout to bring it up to date with recent developments. It features numerous new exercises and examples, as well as two entirely new chapters on machine learning. Features Explains how to solve complex functional equations through numerical methods Includes dozens of challenging exercises Suitable as a graduate-level textbook for financial engineering and financial mathematics or as a professional resource for working quants.