Decision Technologies for Computational Finance

Decision Technologies for Computational Finance
Author: Apostolos-Paul N. Refenes
Publisher: Springer Science & Business Media
Total Pages: 472
Release: 2013-12-01
Genre: Business & Economics
ISBN: 1461556252

This volume contains selected papers that were presented at the International Conference COMPUTATIONAL FINANCE 1997 held at London Business School on December 15-17 1997. Formerly known as Neural Networks in the Capital Markets (NNCM), this series of meetings has emerged as a truly multi-disciplinary international conference and provided an international focus for innovative research on the application of a multiplicity of advanced decision technologies to many areas of financial engineering. It has drawn upon theoretical advances in financial economics and robust methodological developments in the statistical, econometric and computer sciences. To reflect its multi-disciplinary nature, the NNCM conference has adopted the new title COMPUTATIONAL FINANCE. The papers in this volume are organised in six parts. Market Dynamics and Risk, Trading and Arbitrage strategies, Volatility and Options, Term-Structure and Factor models, Corporate Distress Models and Advances on Methodology. This years' acceptance rate (38%) reflects both the increasing interest in the conference and the Programme Committee's efforts to improve the quality of the meeting year-on-year. I would like to thank the members of the programme committee for their efforts in refereeing the papers. I also would like to thank the members of the computational finance group at London Business School and particularly Neil Burgess, Peter Bolland, Yves Bentz, and Nevil Towers for organising the meeting.

Decision Technologies For Financial Engineering - Proceedings Of The Fourth International Conference On Neural Networks In The Capital Markets (Nncm '96)

Decision Technologies For Financial Engineering - Proceedings Of The Fourth International Conference On Neural Networks In The Capital Markets (Nncm '96)
Author: Yaser Abu-mostafa
Publisher: World Scientific
Total Pages: 442
Release: 1998-01-02
Genre: Business & Economics
ISBN: 9814546216

This volume selects the best contributions from the Fourth International Conference on Neural Networks in the Capital Markets (NNCM). The conference brought together academics from several disciplines with strategists and decision makers from the financial industries.The various chapters present and compare new techniques from many areas including data mining, information systems, machine learning, and statistical artificial intelligence. The volume focuses on evaluating their usefulness for problems in computational finance and financial engineering.Applications — risk management; asset allocation; dynamic trading and hedging; forecasting; trading cost control. Markets — equity; foreign exchange; bond; commodity; derivatives; Approaches — data mining; statistical AI; machine learning; Monte Carlo simulation; bootstrapping; genetic algorithms; nonparametric methods; fuzzy logic.The chapters emphasizes in-depth and comparative evaluation with established approaches.

Neural Networks and the Financial Markets

Neural Networks and the Financial Markets
Author: Jimmy Shadbolt
Publisher: Springer Science & Business Media
Total Pages: 266
Release: 2012-12-06
Genre: Computers
ISBN: 1447101510

This volume looks at financial prediction from a broad range of perspectives. It covers: - the economic arguments - the practicalities of the markets - how predictions are used - how predictions are made - how predictions are turned into something usable (asset locations) It combines a discussion of standard theory with state-of-the-art material on a wide range of information processing techniques as applied to cutting-edge financial problems. All the techniques are demonstrated with real examples using actual market data, and show that it is possible to extract information from very noisy, sparse data sets. Aimed primarily at researchers in financial prediction, time series analysis and information processing, this book will also be of interest to quantitative fund managers and other professionals involved in financial prediction.

Encyclopedia of Information Science and Technology

Encyclopedia of Information Science and Technology
Author: Mehdi Khosrow-Pour
Publisher: IGI Global Snippet
Total Pages: 4292
Release: 2009
Genre: Computers
ISBN: 9781605660264

"This set of books represents a detailed compendium of authoritative, research-based entries that define the contemporary state of knowledge on technology"--Provided by publisher.

Modern Computational Finance

Modern Computational Finance
Author: Antoine Savine
Publisher: John Wiley & Sons
Total Pages: 592
Release: 2018-11-20
Genre: Mathematics
ISBN: 1119539455

Arguably the strongest addition to numerical finance of the past decade, Algorithmic Adjoint Differentiation (AAD) is the technology implemented in modern financial software to produce thousands of accurate risk sensitivities, within seconds, on light hardware. AAD recently became a centerpiece of modern financial systems and a key skill for all quantitative analysts, developers, risk professionals or anyone involved with derivatives. It is increasingly taught in Masters and PhD programs in finance. Danske Bank's wide scale implementation of AAD in its production and regulatory systems won the In-House System of the Year 2015 Risk award. The Modern Computational Finance books, written by three of the very people who designed Danske Bank's systems, offer a unique insight into the modern implementation of financial models. The volumes combine financial modelling, mathematics and programming to resolve real life financial problems and produce effective derivatives software. This volume is a complete, self-contained learning reference for AAD, and its application in finance. AAD is explained in deep detail throughout chapters that gently lead readers from the theoretical foundations to the most delicate areas of an efficient implementation, such as memory management, parallel implementation and acceleration with expression templates. The book comes with professional source code in C++, including an efficient, up to date implementation of AAD and a generic parallel simulation library. Modern C++, high performance parallel programming and interfacing C++ with Excel are also covered. The book builds the code step-by-step, while the code illustrates the concepts and notions developed in the book.

Computational Finance 1999

Computational Finance 1999
Author: Yaser S. Abu-Mostafa
Publisher: MIT Press
Total Pages: 744
Release: 2000
Genre: Business & Economics
ISBN: 9780262511070

This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation. Computational finance, an exciting new cross-disciplinary research area, draws extensively on the tools and techniques of computer science, statistics, information systems, and financial economics. This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation. These methods are applied to a wide range of problems in finance, including risk management, asset allocation, style analysis, dynamic trading and hedging, forecasting, and option pricing. The book is based on the sixth annual international conference Computational Finance 1999, held at New York University's Stern School of Business.

Intelligent Decision Technologies 2017

Intelligent Decision Technologies 2017
Author: Ireneusz Czarnowski
Publisher: Springer
Total Pages: 366
Release: 2017-05-24
Genre: Technology & Engineering
ISBN: 3319594249

The volume presents a collection of peer-reviewed articles from the 9th KES International Conference on Intelligent Decision Technologies (KES-IDT-17), held in Vilamoura, Algarve, Portugal on 21–23 June 2017. The conference addressed critical areas of computer science, as well as promoting knowledge transfer and the generation of new ideas in the field of intelligent decision making, project management and data analysis. The range of topics addressed includes methods of classification, prediction, data analysis, decision support, modeling, social media and many more in such diverse areas as finance, linguistics, management and transportation.

Intelligent Decision Technologies

Intelligent Decision Technologies
Author: Junzo Watada
Publisher: Springer Science & Business Media
Total Pages: 903
Release: 2011-11-19
Genre: Technology & Engineering
ISBN: 3642221947

Intelligent Decision Technologies (IDT) seeks an interchange of research on intelligent systems and intelligent technologies which enhance or improve decision making in industry, government and academia. The focus is interdisciplinary in nature, and includes research on all aspects of intelligent decision technologies, from fundamental development to the applied system. This volume represents leading research from the Third KES International Symposium on Intelligent Decision Technologies (KES IDT’11), hosted and organized by the University of Piraeus, Greece, in conjunction with KES International. The symposium was concerned with theory, design, development, implementation, testing and evaluation of intelligent decision systems. Topics include decision making theory, intelligent agents, fuzzy logic, multi-agent systems, Bayesian networks, optimization, artificial neural networks, genetic algorithms, expert systems, decision support systems, geographic information systems, case-based reasoning, time series, knowledge management systems, rough sets, spatial decision analysis, and multi-criteria decision analysis. These technologies have the potential to revolutionize decision making in many areas of management, healthcare, international business, finance, accounting, marketing, military applications, ecommerce, network management, crisis response, building design, information retrieval, and disaster recovery for a better future. The symposium was concerned with theory, design, development, implementation, testing and evaluation of intelligent decision systems. Topics include decision making theory, intelligent agents, fuzzy logic, multi-agent systems, Bayesian networks, optimization, artificial neural networks, genetic algorithms, expert systems, decision support systems, geographic information systems, case-based reasoning, time series, knowledge management systems, rough sets, spatial decision analysis, and multi-criteria decision analysis. These technologies have the potential to revolutionize decision making in many areas of management, healthcare, international business, finance, accounting, marketing, military applications, ecommerce, network management, crisis response, building design, information retrieval, and disaster recovery for a better future.