Decision Processes in Dynamic Probabilistic Systems

Decision Processes in Dynamic Probabilistic Systems
Author: A.V. Gheorghe
Publisher: Springer Science & Business Media
Total Pages: 370
Release: 2012-12-06
Genre: Mathematics
ISBN: 9400904932

'Et moi - ... - si j'avait su comment en revenir. One service mathematics has rendered the je n'y serais point aile: human race. It has put common sense back where it belongs. on the topmost shelf next Jules Verne (0 the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.

Dynamic Probabilistic Systems, Volume II

Dynamic Probabilistic Systems, Volume II
Author: Ronald A. Howard
Publisher: Courier Corporation
Total Pages: 857
Release: 2013-01-18
Genre: Mathematics
ISBN: 0486152006

This book is an integrated work published in two volumes. The first volume treats the basic Markov process and its variants; the second, semi-Markov and decision processes. Its intent is to equip readers to formulate, analyze, and evaluate simple and advanced Markov models of systems, ranging from genetics and space engineering to marketing. More than a collection of techniques, it constitutes a guide to the consistent application of the fundamental principles of probability and linear system theory. Author Ronald A. Howard, Professor of Management Science and Engineering at Stanford University, continues his treatment from Volume I with surveys of the discrete- and continuous-time semi-Markov processes, continuous-time Markov processes, and the optimization procedure of dynamic programming. The final chapter reviews the preceding material, focusing on the decision processes with discussions of decision structure, value and policy iteration, and examples of infinite duration and transient processes. Volume II concludes with an appendix listing the properties of congruent matrix multiplication.

Dynamic Probabilistic Systems, Volume I

Dynamic Probabilistic Systems, Volume I
Author: Ronald A. Howard
Publisher: Courier Corporation
Total Pages: 610
Release: 2012-05-04
Genre: Mathematics
ISBN: 0486140679

This book is an integrated work published in two volumes. The first volume treats the basic Markov process and its variants; the second, semi-Markov and decision processes. Its intent is to equip readers to formulate, analyze, and evaluate simple and advanced Markov models of systems, ranging from genetics and space engineering to marketing. More than a collection of techniques, it constitutes a guide to the consistent application of the fundamental principles of probability and linear system theory. Author Ronald A. Howard, Professor of Management Science and Engineering at Stanford University, begins with the basic Markov model, proceeding to systems analyses of linear processes and Markov processes, transient Markov processes and Markov process statistics, and statistics and inference. Subsequent chapters explore recurrent events and random walks, Markovian population models, and time-varying Markov processes. Volume I concludes with a pair of helpful indexes.

Markov Decision Processes

Markov Decision Processes
Author: Martin L. Puterman
Publisher: John Wiley & Sons
Total Pages: 544
Release: 2014-08-28
Genre: Mathematics
ISBN: 1118625870

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet of examples, applications, and exercises. The bibliographical material at the end of each chapter is excellent, not only from a historical perspective, but because it is valuable for researchers in acquiring a good perspective of the MDP research potential." —Zentralblatt fur Mathematik ". . . it is of great value to advanced-level students, researchers, and professional practitioners of this field to have now a complete volume (with more than 600 pages) devoted to this topic. . . . Markov Decision Processes: Discrete Stochastic Dynamic Programming represents an up-to-date, unified, and rigorous treatment of theoretical and computational aspects of discrete-time Markov decision processes." —Journal of the American Statistical Association

Markov Decision Processes in Practice

Markov Decision Processes in Practice
Author: Richard J. Boucherie
Publisher: Springer
Total Pages: 563
Release: 2017-03-10
Genre: Business & Economics
ISBN: 3319477668

This book presents classical Markov Decision Processes (MDP) for real-life applications and optimization. MDP allows users to develop and formally support approximate and simple decision rules, and this book showcases state-of-the-art applications in which MDP was key to the solution approach. The book is divided into six parts. Part 1 is devoted to the state-of-the-art theoretical foundation of MDP, including approximate methods such as policy improvement, successive approximation and infinite state spaces as well as an instructive chapter on Approximate Dynamic Programming. It then continues with five parts of specific and non-exhaustive application areas. Part 2 covers MDP healthcare applications, which includes different screening procedures, appointment scheduling, ambulance scheduling and blood management. Part 3 explores MDP modeling within transportation. This ranges from public to private transportation, from airports and traffic lights to car parking or charging your electric car . Part 4 contains three chapters that illustrates the structure of approximate policies for production or manufacturing structures. In Part 5, communications is highlighted as an important application area for MDP. It includes Gittins indices, down-to-earth call centers and wireless sensor networks. Finally Part 6 is dedicated to financial modeling, offering an instructive review to account for financial portfolios and derivatives under proportional transactional costs. The MDP applications in this book illustrate a variety of both standard and non-standard aspects of MDP modeling and its practical use. This book should appeal to readers for practitioning, academic research and educational purposes, with a background in, among others, operations research, mathematics, computer science, and industrial engineering.

Handbook of Markov Decision Processes

Handbook of Markov Decision Processes
Author: Eugene A. Feinberg
Publisher: Springer Science & Business Media
Total Pages: 560
Release: 2012-12-06
Genre: Business & Economics
ISBN: 1461508053

Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a "good" control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation.

Combining Fuzzy Imprecision with Probabilistic Uncertainty in Decision Making

Combining Fuzzy Imprecision with Probabilistic Uncertainty in Decision Making
Author: Mario Fedrizzi
Publisher: Springer Science & Business Media
Total Pages: 410
Release: 2012-12-06
Genre: Business & Economics
ISBN: 3642466443

In the literature of decision analysis it is traditional to rely on the tools provided by probability theory to deal with problems in which uncertainty plays a substantive role. In recent years, however, it has become increasingly clear that uncertainty is a mul tifaceted concept in which some of the important facets do not lend themselves to analysis by probability-based methods. One such facet is that of fuzzy imprecision, which is associated with the use of fuzzy predicates exemplified by small, large, fast, near, likely, etc. To be more specific, consider a proposition such as "It is very unlikely that the price of oil will decline sharply in the near future," in which the italicized words play the role of fuzzy predicates. The question is: How can one express the mean ing of this proposition through the use of probability-based methods? If this cannot be done effectively in a probabilistic framework, then how can one employ the information provided by the proposition in question to bear on a decision relating to an investment in a company engaged in exploration and marketing of oil? As another example, consider a collection of rules of the form "If X is Ai then Y is B,," j = 1, . . . , n, in which X and Yare real-valued variables and Ai and Bi are fuzzy numbers exemplified by small, large, not very small, close to 5, etc.

Partially Observed Markov Decision Processes

Partially Observed Markov Decision Processes
Author: Vikram Krishnamurthy
Publisher: Cambridge University Press
Total Pages: 491
Release: 2016-03-21
Genre: Mathematics
ISBN: 1107134609

This book covers formulation, algorithms, and structural results of partially observed Markov decision processes, whilst linking theory to real-world applications in controlled sensing. Computations are kept to a minimum, enabling students and researchers in engineering, operations research, and economics to understand the methods and determine the structure of their optimal solution.