Networked Multisensor Decision and Estimation Fusion

Networked Multisensor Decision and Estimation Fusion
Author: Yunmin Zhu
Publisher: CRC Press
Total Pages: 442
Release: 2012-07-05
Genre: Mathematics
ISBN: 1439874522

Due to the increased capability, reliability, robustness, and survivability of systems with multiple distributed sensors, multi-source information fusion has become a crucial technique in a growing number of areas—including sensor networks, space technology, air traffic control, military engineering, agriculture and environmental engineering, and industrial control. Networked Multisensor Decision and Estimation Fusion: Based on Advanced Mathematical Methods presents advanced mathematical descriptions and methods to help readers achieve more thorough results under more general conditions than what has been possible with previous results in the existing literature. Examining emerging real-world problems, this book summarizes recent research developments in problems with unideal and uncertain frameworks. It presents essential mathematical descriptions and methods for multisensory decision and estimation fusion. Deriving thorough results under general conditions, this reference book: Corrects several popular but incorrect results in this area with thorough mathematical ideas Provides advanced mathematical methods, which lead to more general and significant results Presents updated systematic developments in both multisensor decision and estimation fusion, which cannot be seen in other existing books Includes numerous computer experiments that support every theoretical result The book applies recently developed convex optimization theory and high efficient algorithms in estimation fusion, which opens a very attractive research subject on minimizing Euclidean error estimation for uncertain dynamic systems. Supplying powerful and advanced mathematical treatment of the fundamental problems, it will help to greatly broaden prospective applications of such developments in practice.

Multisensor Decision And Estimation Fusion

Multisensor Decision And Estimation Fusion
Author: Yunmin Zhu
Publisher: Taylor & Francis US
Total Pages: 266
Release: 2003
Genre: Computers
ISBN: 9781402072581

YUNMIN ZHU In the past two decades, multi sensor or multi-source information fusion tech niques have attracted more and more attention in practice, where observations are processed in a distributed manner and decisions or estimates are made at the individual processors, and processed data (or compressed observations) are then transmitted to a fusion center where the final global decision or estimate is made. A system with multiple distributed sensors has many advantages over one with a single sensor. These include an increase in the capability, reliability, robustness and survivability of the system. Distributed decision or estimation fusion prob lems for cases with statistically independent observations or observation noises have received significant attention (see Varshney's book Distributed Detec tion and Data Fusion, New York: Springer-Verlag, 1997, Bar-Shalom's book Multitarget-Multisensor Tracking: Advanced Applications, vol. 1-3, Artech House, 1990, 1992,2000). Problems with statistically dependent observations or observation noises are more difficult and have received much less study. In practice, however, one often sees decision or estimation fusion problems with statistically dependent observations or observation noises. For instance, when several sensors are used to detect a random signal in the presence of observation noise, the sensor observations could not be statistically independent when the signal is present. This book provides a more complete treatment of the fundamentals of multi sensor decision and estimation fusion in order to deal with general random ob servations or observation noises that are correlated across the sensors.

Sensor and Data Fusion

Sensor and Data Fusion
Author: Lawrence A. Klein
Publisher: SPIE Press
Total Pages: 346
Release: 2004
Genre: Technology & Engineering
ISBN: 9780819454355

This book illustrates the benefits of sensor fusion by considering the characteristics of infrared, microwave, and millimeter-wave sensors, including the influence of the atmosphere on their performance. Applications that benefit from this technology include: vehicular traffic management, remote sensing, target classification and tracking- weather forecasting- military and homeland defense. Covering data fusion algorithms in detail, Klein includes a summary of the information required to implement each of the algorithms discussed, and outlines system application scenarios that may limit sensor size but that require high resolution data.

Mathematics of Data Fusion

Mathematics of Data Fusion
Author: I.R. Goodman
Publisher: Springer Science & Business Media
Total Pages: 538
Release: 1997-08-31
Genre: Mathematics
ISBN: 9780792346746

Data fusion or information fusion are names which have been primarily assigned to military-oriented problems. In military applications, typical data fusion problems are: multisensor, multitarget detection, object identification, tracking, threat assessment, mission assessment and mission planning, among many others. However, it is clear that the basic underlying concepts underlying such fusion procedures can often be used in nonmilitary applications as well. The purpose of this book is twofold: First, to point out present gaps in the way data fusion problems are conceptually treated. Second, to address this issue by exhibiting mathematical tools which treat combination of evidence in the presence of uncertainty in a more systematic and comprehensive way. These techniques are based essentially on two novel ideas relating to probability theory: the newly developed fields of random set theory and conditional and relational event algebra. This volume is intended to be both an update on research progress on data fusion and an introduction to potentially powerful new techniques: fuzzy logic, random set theory, and conditional and relational event algebra. Audience: This volume can be used as a reference book for researchers and practitioners in data fusion or expert systems theory, or for graduate students as text for a research seminar or graduate level course.

Comprehensive Remote Sensing

Comprehensive Remote Sensing
Author: Shunlin Liang
Publisher: Elsevier
Total Pages: 3183
Release: 2017-11-08
Genre: Science
ISBN: 0128032219

Comprehensive Remote Sensing, Nine Volume Set covers all aspects of the topic, with each volume edited by well-known scientists and contributed to by frontier researchers. It is a comprehensive resource that will benefit both students and researchers who want to further their understanding in this discipline. The field of remote sensing has quadrupled in size in the past two decades, and increasingly draws in individuals working in a diverse set of disciplines ranging from geographers, oceanographers, and meteorologists, to physicists and computer scientists. Researchers from a variety of backgrounds are now accessing remote sensing data, creating an urgent need for a one-stop reference work that can comprehensively document the development of remote sensing, from the basic principles, modeling and practical algorithms, to various applications. Fully comprehensive coverage of this rapidly growing discipline, giving readers a detailed overview of all aspects of Remote Sensing principles and applications Contains ‘Layered content’, with each article beginning with the basics and then moving on to more complex concepts Ideal for advanced undergraduates and academic researchers Includes case studies that illustrate the practical application of remote sensing principles, further enhancing understanding

Modeling Decisions

Modeling Decisions
Author: Vicenç Torra
Publisher: Springer Science & Business Media
Total Pages: 284
Release: 2007-05-11
Genre: Computers
ISBN: 3540687912

This book covers the underlying science and application issues related to aggregation operators, focusing on tools used in practical applications that involve numerical information. It will thus be required reading for engineers, statisticians and computer scientists of all kinds. Starting with detailed introductions to information fusion and integration, measurement and probability theory, fuzzy sets, and functional equations, the authors then cover numerous topics in detail, including the synthesis of judgements, fuzzy measures, weighted means and fuzzy integrals.

Deep Learning for Chest Radiographs

Deep Learning for Chest Radiographs
Author: Yashvi Chandola
Publisher: Elsevier
Total Pages: 230
Release: 2021-07-16
Genre: Computers
ISBN: 0323906869

Deep Learning for Chest Radiographs enumerates different strategies implemented by the authors for designing an efficient convolution neural network-based computer-aided classification (CAC) system for binary classification of chest radiographs into "Normal" and "Pneumonia." Pneumonia is an infectious disease mostly caused by a bacteria or a virus. The prime targets of this infectious disease are children below the age of 5 and adults above the age of 65, mostly due to their poor immunity and lower rates of recovery. Globally, pneumonia has prevalent footprints and kills more children as compared to any other immunity-based disease, causing up to 15% of child deaths per year, especially in developing countries. Out of all the available imaging modalities, such as computed tomography, radiography or X-ray, magnetic resonance imaging, ultrasound, and so on, chest radiographs are most widely used for differential diagnosis between Normal and Pneumonia. In the CAC system designs implemented in this book, a total of 200 chest radiograph images consisting of 100 Normal images and 100 Pneumonia images have been used. These chest radiographs are augmented using geometric transformations, such as rotation, translation, and flipping, to increase the size of the dataset for efficient training of the Convolutional Neural Networks (CNNs). A total of 12 experiments were conducted for the binary classification of chest radiographs into Normal and Pneumonia. It also includes in-depth implementation strategies of exhaustive experimentation carried out using transfer learning-based approaches with decision fusion, deep feature extraction, feature selection, feature dimensionality reduction, and machine learning-based classifiers for implementation of end-to-end CNN-based CAC system designs, lightweight CNN-based CAC system designs, and hybrid CAC system designs for chest radiographs. This book is a valuable resource for academicians, researchers, clinicians, postgraduate and graduate students in medical imaging, CAC, computer-aided diagnosis, computer science and engineering, electrical and electronics engineering, biomedical engineering, bioinformatics, bioengineering, and professionals from the IT industry. - Provides insights into the theory, algorithms, implementation, and application of deep-learning techniques for medical images such as transfer learning using pretrained CNNs, series networks, directed acyclic graph networks, lightweight CNN models, deep feature extraction, and conventional machine learning approaches for feature selection, feature dimensionality reduction, and classification using support vector machine, neuro-fuzzy classifiers - Covers the various augmentation techniques that can be used with medical images and the CNN-based CAC system designs for binary classification of medical images focusing on chest radiographs - Investigates the development of an optimal CAC system design with deep feature extraction and classification of chest radiographs by comparing the performance of 12 different CAC system designs

Fusion Methodologies in Crisis Management

Fusion Methodologies in Crisis Management
Author: Galina Rogova
Publisher: Springer
Total Pages: 544
Release: 2016-01-21
Genre: Technology & Engineering
ISBN: 3319225278

The book emphasizes a contemporary view on the role of higher level fusion in designing crisis management systems, and provide the formal foundations, architecture and implementation strategies required for building dynamic current and future situational pictures, challenges of, and the state of the art computational approaches to designing such processes. This book integrates recent advances in decision theory with those in fusion methodology to define an end-to-end framework for decision support in crisis management. The text discusses modern fusion and decision support methods for dealing with heterogeneous and often unreliable, low fidelity, contradictory, and redundant data and information, as well as rare, unknown, unconventional or even unimaginable critical situations. Also the book examines the role of context in situation management, cognitive aspects of decision making and situation management, approaches to domain representation, visualization, as well as the role and exploitation of the social media. The editors include examples and case studies from the field of disaster management.

Mathematical Techniques in Multisensor Data Fusion

Mathematical Techniques in Multisensor Data Fusion
Author: David Lee Hall
Publisher: Artech House
Total Pages: 470
Release: 2004
Genre: Computers
ISBN: 9781580533355

Since the publication of the first edition of this book, advances in algorithms, logic and software tools have transformed the field of data fusion. The latest edition covers these areas as well as smart agents, human computer interaction, cognitive aides to analysis and data system fusion control. data fusion system, this book guides you through the process of determining the trade-offs among competing data fusion algorithms, selecting commercial off-the-shelf (COTS) tools, and understanding when data fusion improves systems processing. Completely new chapters in this second edition explain data fusion system control, DARPA's recently developed TRIP model, and the latest applications of data fusion in data warehousing and medical equipment, as well as defence systems.