Decision Forests

Decision Forests
Author: Antonio Criminisi
Publisher: Foundations and Trends(r) in C
Total Pages: 162
Release: 2012-03
Genre: Computers
ISBN: 9781601985408

Presents a unified, efficient model of random decision forests which can be used in a number of applications such as scene recognition from photographs, object recognition in images, automatic diagnosis from radiological scans and document analysis.

Interpretable Machine Learning

Interpretable Machine Learning
Author: Christoph Molnar
Publisher: Lulu.com
Total Pages: 320
Release: 2020
Genre: Computers
ISBN: 0244768528

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases
Author: Walter Daelemans
Publisher: Springer Science & Business Media
Total Pages: 714
Release: 2008-09-04
Genre: Computers
ISBN: 354087478X

This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.

Pattern Recognition

Pattern Recognition
Author: Sergios Theodoridis
Publisher: Elsevier
Total Pages: 705
Release: 2003-05-15
Genre: Technology & Engineering
ISBN: 008051362X

Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest

Classification and Regression Trees

Classification and Regression Trees
Author: Leo Breiman
Publisher: Routledge
Total Pages: 370
Release: 2017-10-19
Genre: Mathematics
ISBN: 135146048X

The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

Image Processing and Pattern Recognition

Image Processing and Pattern Recognition
Author: Cornelius T. Leondes
Publisher: Elsevier
Total Pages: 407
Release: 1998-02-09
Genre: Technology & Engineering
ISBN: 0080551440

Image Processing and Pattern Recognition covers major applications in the field, including optical character recognition, speech classification, medical imaging, paper currency recognition, classification reliability techniques, and sensor technology. The text emphasizes algorithms and architectures for achieving practical and effective systems, and presents many examples. Practitioners, researchers, and students in computer science, electrical engineering, andradiology, as well as those working at financial institutions, will value this unique and authoritative reference to diverse applications methodologies.Coverage includes: - Optical character recognition - Speech classification - Medical imaging - Paper currency recognition - Classification reliability techniques - Sensor technology Algorithms and architectures for achieving practical and effective systems are emphasized, with many examples illustrating the text. Practitioners, researchers, and students in computer science, electrical engineering, and radiology, as wellk as those working at financial institutions, will find this volume a unique and comprehensive reference source for this diverse applications area.

Introduction to Robust Estimation and Hypothesis Testing

Introduction to Robust Estimation and Hypothesis Testing
Author: Rand R. Wilcox
Publisher: Academic Press
Total Pages: 930
Release: 2021-09-18
Genre: Mathematics
ISBN: 0128200995

Introduction to Robust Estimating and Hypothesis Testing, Fifth Edition is a useful 'how-to' on the application of robust methods utilizing easy-to-use software. This trusted resource provides an overview of modern robust methods, including improved techniques for dealing with outliers, skewed distribution curvature, and heteroscedasticity that can provide substantial gains in power. Coverage includes techniques for comparing groups and measuring effect size, current methods for comparing quantiles, and expanded regression methods for both parametric and nonparametric techniques. The practical importance of these varied methods is illustrated using data from real world studies. Over 1700 R functions are included to support comprehension and practice. - Includes the latest developments in robust regression - Provides many new, improved and accessible R functions - Offers comprehensive coverage of ANOVA and ANCOVA methods

Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance
Author: Hariom Tatsat
Publisher: "O'Reilly Media, Inc."
Total Pages: 426
Release: 2020-10-01
Genre: Computers
ISBN: 1492073008

Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations