Data Science in Engineering and Management

Data Science in Engineering and Management
Author: Zdzislaw Polkowski
Publisher: CRC Press
Total Pages: 159
Release: 2021-12-31
Genre: Technology & Engineering
ISBN: 1000520846

This book brings insight into data science and offers applications and implementation strategies. It includes current developments and future directions and covers the concept of data science along with its origins. It focuses on the mechanisms of extracting data along with classifications, architectural concepts, and business intelligence with predictive analysis. Data Science in Engineering and Management: Applications, New Developments, and Future Trends introduces the concept of data science, its use, and its origins, as well as presenting recent trends, highlighting future developments; discussing problems and offering solutions. It provides an overview of applications on data linked to engineering and management perspectives and also covers how data scientists, analysts, and program managers who are interested in productivity and improving their business can do so by incorporating a data science workflow effectively. This book is useful to researchers involved in data science and can be a reference for future research. It is also suitable as supporting material for undergraduate and graduate-level courses in related engineering disciplines.

Data Analytics for Engineering and Construction Project Risk Management

Data Analytics for Engineering and Construction Project Risk Management
Author: Ivan Damnjanovic
Publisher: Springer
Total Pages: 382
Release: 2019-05-23
Genre: Technology & Engineering
ISBN: 3030142515

This book provides a step-by-step guidance on how to implement analytical methods in project risk management. The text focuses on engineering design and construction projects and as such is suitable for graduate students in engineering, construction, or project management, as well as practitioners aiming to develop, improve, and/or simplify corporate project management processes. The book places emphasis on building data-driven models for additive-incremental risks, where data can be collected on project sites, assembled from queries of corporate databases, and/or generated using procedures for eliciting experts’ judgments. While the presented models are mathematically inspired, they are nothing beyond what an engineering graduate is expected to know: some algebra, a little calculus, a little statistics, and, especially, undergraduate-level understanding of the probability theory. The book is organized in three parts and fourteen chapters. In Part I the authors provide the general introduction to risk and uncertainty analysis applied to engineering construction projects. The basic formulations and the methods for risk assessment used during project planning phase are discussed in Part II, while in Part III the authors present the methods for monitoring and (re)assessment of risks during project execution.

Engineering and Management of Data Centers

Engineering and Management of Data Centers
Author: Jorge Marx Gómez
Publisher: Springer
Total Pages: 290
Release: 2017-11-10
Genre: Computers
ISBN: 3319650823

This edited volume covers essential and recent development in the engineering and management of data centers. Data centers are complex systems requiring ongoing support, and their high value for keeping business continuity operations is crucial. The book presents core topics on the planning, design, implementation, operation and control, and sustainability of a data center from a didactical and practitioner viewpoint. Chapters include: · Foundations of data centers: Key Concepts and Taxonomies · ITSDM: A Methodology for IT Services Design · Managing Risks on Data Centers through Dashboards · Risk Analysis in Data Center Disaster Recovery Plans · Best practices in Data Center Management Case: KIO Networks · QoS in NaaS (Network as a Service) using Software Defined Networking · Optimization of Data Center Fault-Tolerance Design · Energetic Data Centre Design Considering Energy Efficiency Improvements During Operation · Demand-side Flexibility and Supply-side Management: The Use Case of Data Centers and Energy Utilities · DevOps: Foundations and its Utilization in Data Centers · Sustainable and Resilient Network Infrastructure Design for Cloud Data Centres · Application Software in Cloud-Ready Data Centers This book bridges the gap between academia and the industry, offering essential reading for practitioners in data centers, researchers in the area, and faculty teaching related courses on data centers. The book can be used as a complementary text for traditional courses on Computer Networks, as well as innovative courses on IT Architecture, IT Service Management, IT Operations, and Data Centers.

Perspectives on Data Science for Software Engineering

Perspectives on Data Science for Software Engineering
Author: Tim Menzies
Publisher: Morgan Kaufmann
Total Pages: 410
Release: 2016-07-14
Genre: Computers
ISBN: 0128042613

Perspectives on Data Science for Software Engineering presents the best practices of seasoned data miners in software engineering. The idea for this book was created during the 2014 conference at Dagstuhl, an invitation-only gathering of leading computer scientists who meet to identify and discuss cutting-edge informatics topics. At the 2014 conference, the concept of how to transfer the knowledge of experts from seasoned software engineers and data scientists to newcomers in the field highlighted many discussions. While there are many books covering data mining and software engineering basics, they present only the fundamentals and lack the perspective that comes from real-world experience. This book offers unique insights into the wisdom of the community's leaders gathered to share hard-won lessons from the trenches. Ideas are presented in digestible chapters designed to be applicable across many domains. Topics included cover data collection, data sharing, data mining, and how to utilize these techniques in successful software projects. Newcomers to software engineering data science will learn the tips and tricks of the trade, while more experienced data scientists will benefit from war stories that show what traps to avoid. - Presents the wisdom of community experts, derived from a summit on software analytics - Provides contributed chapters that share discrete ideas and technique from the trenches - Covers top areas of concern, including mining security and social data, data visualization, and cloud-based data - Presented in clear chapters designed to be applicable across many domains

Handbook of Data Science Approaches for Biomedical Engineering

Handbook of Data Science Approaches for Biomedical Engineering
Author: Valentina Emilia Balas
Publisher: Academic Press
Total Pages: 320
Release: 2019-11-13
Genre: Science
ISBN: 0128183195

Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more

Operations Engineering and Management: Concepts, Analytics and Principles for Improvement

Operations Engineering and Management: Concepts, Analytics and Principles for Improvement
Author: Seyed Iravani
Publisher: McGraw Hill Professional
Total Pages: 862
Release: 2020-10-16
Genre: Technology & Engineering
ISBN: 126046184X

Discover how to apply engineering thinking and data analytics to business operations This comprehensive textbook shows readers how to develop their engineering thinking and analytics to support making strategic and tactical decisions in managing and control of operations systems and supply chains. The book is created in a modular fashion so that sections and chapters can stand alone and be used within operations courses across the spectrum. Operations Engineering and Management: Concepts, Analytics and Principles for Improvement is based on the author’s successful classes in both business and engineering. The book presents concepts and principles of operations management, with a strong emphasis on analytics and a sharp focus on improving operations. You will explore both the engineering approach to operations (e.g., analytics and engineering thinking) and the classic management approach. • Focuses on teaching and developing strong problem-solving analytics skills • Each section is designed to stand alone and can be used in a wide variety of courses • Written by an operations management and engineering expert

Data Science and Digital Business

Data Science and Digital Business
Author: Fausto Pedro García Márquez
Publisher: Springer
Total Pages: 319
Release: 2019-01-04
Genre: Business & Economics
ISBN: 3319956515

This book combines the analytic principles of digital business and data science with business practice and big data. The interdisciplinary, contributed volume provides an interface between the main disciplines of engineering and technology and business administration. Written for managers, engineers and researchers who want to understand big data and develop new skills that are necessary in the digital business, it not only discusses the latest research, but also presents case studies demonstrating the successful application of data in the digital business.

Engineering Analytics

Engineering Analytics
Author: Luis Rabelo
Publisher: CRC Press
Total Pages: 283
Release: 2021-09-26
Genre: Business & Economics
ISBN: 1000453758

Engineering analytics is becoming a necessary skill for every engineer. Areas such as Operations Research, Simulation, and Machine Learning can be totally transformed through massive volumes of data. This book is intended to be an introduction to Engineering Analytics that can be used to improve performance tracking, customer segmentation for resource optimization, patterns and classification strategies, and logistics control towers. Basic methods in the areas of visual, descriptive, predictive, and prescriptive analytics and Big Data are introduced. Industrial case studies and example problem demonstrations are used throughout the book to reinforce the concepts and applications. The book goes on to cover visual analytics and its relationships, simulation from the respective dimensions and Machine Learning and Artificial Intelligence from different paradigms viewpoints. The book is intended for professionals wanting to work on analytical problems, for Engineering students, Researchers, Chief-Technology Officers, and Directors that work within the areas and fields of Industrial Engineering, Computer Science, Statistics, Electrical Engineering Operations Research, and Big Data.

Feature Engineering for Machine Learning and Data Analytics

Feature Engineering for Machine Learning and Data Analytics
Author: Guozhu Dong
Publisher: CRC Press
Total Pages: 400
Release: 2018-03-14
Genre: Business & Economics
ISBN: 1351721275

Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.

IoT and Data Science in Engineering Management

IoT and Data Science in Engineering Management
Author: Fausto Pedro García Márquez
Publisher: Springer Nature
Total Pages: 551
Release: 2023-03-24
Genre: Technology & Engineering
ISBN: 3031279158

This book presents the selected research works from the 16th International Conference on Industrial Engineering and Industrial Management in 2022. The conference was promoted by ADINGOR (Asociación para el Desarrollo de la Ingeniería de Organización), organized by Ingenium Research Group at Universidad de Castilla-La Mancha, Spain, and it took place on July 7th and 8th, 2022, in Toledo, Spain. The book highlights some of the latest research advances and cutting-edge analyses of real-world case studies on Industrial Engineering and Industrial Management from a wide range of international contexts. It also identifies business applications and the latest findings and innovations in Operations Management and in Decision Sciences.