Data Resource Data
Download Data Resource Data full books in PDF, epub, and Kindle. Read online free Data Resource Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Len Silverston |
Publisher | : John Wiley & Sons |
Total Pages | : 572 |
Release | : 2011-08-08 |
Genre | : Computers |
ISBN | : 111808232X |
A quick and reliable way to build proven databases for core business functions Industry experts raved about The Data Model Resource Book when it was first published in March 1997 because it provided a simple, cost-effective way to design databases for core business functions. Len Silverston has now revised and updated the hugely successful 1st Edition, while adding a companion volume to take care of more specific requirements of different businesses. This updated volume provides a common set of data models for specific core functions shared by most businesses like human resources management, accounting, and project management. These models are standardized and are easily replicated by developers looking for ways to make corporate database development more efficient and cost effective. This guide is the perfect complement to The Data Model Resource CD-ROM, which is sold separately and provides the powerful design templates discussed in the book in a ready-to-use electronic format. A free demonstration CD-ROM is available with each copy of the print book to allow you to try before you buy the full CD-ROM.
Author | : Julia Bauder |
Publisher | : American Library Association |
Total Pages | : 183 |
Release | : 2014-06-12 |
Genre | : Computers |
ISBN | : 0838912273 |
This concise sourcebook takes the guesswork out of locating the best sources of data, a process more important than ever as the data landscape grows increasingly cluttered. Much of the most frequently used data can be found free online, and this book shows readers how to look for it with the assistance of user-friendly tools. This thoroughly annotated guide will be a boon to library staff at public libraries, high school libraries, academic libraries, and other research institutions, with concentrated coverage of Data sources for frequently researched subjects such as agriculture, the earth sciences, economics, energy, political science, transportation, and many more The basics of data reference along with an overview of the most useful sources, focusing on free online sources of reliable statistics like government agencies and NGOs Statistical datasets, and how to understand and make use of them How to use article databases, WorldCat, and subject experts to find data Methods for citing data Survey Documentation and Analysis (SDA) software This guide cuts through the data jargon to help librarians and researchers find exactly what they're looking for.
Author | : Michael H. Brackett |
Publisher | : Addison-Wesley Professional |
Total Pages | : 390 |
Release | : 2000 |
Genre | : Business & Economics |
ISBN | : |
"Covering both data architecture and data management issues, the book describes the impact of poor data practices, demonstrates more effective approaches, and reveals implementation pointers for quick results."--Jacket.
Author | : Hadley Wickham |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 521 |
Release | : 2016-12-12 |
Genre | : Computers |
ISBN | : 1491910364 |
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Author | : Antonio Pareja-Lora |
Publisher | : MIT Press |
Total Pages | : 273 |
Release | : 2020-01-07 |
Genre | : Language Arts & Disciplines |
ISBN | : 0262357224 |
Making diverse data in linguistics and the language sciences open, distributed, and accessible: perspectives from language/language acquistiion researchers and technical LOD (linked open data) researchers. This volume examines the challenges inherent in making diverse data in linguistics and the language sciences open, distributed, integrated, and accessible, thus fostering wide data sharing and collaboration. It is unique in integrating the perspectives of language researchers and technical LOD (linked open data) researchers. Reporting on both active research needs in the field of language acquisition and technical advances in the development of data interoperability, the book demonstrates the advantages of an international infrastructure for scholarship in the field of language sciences. With contributions by researchers who produce complex data content and scholars involved in both the technology and the conceptual foundations of LLOD (linguistics linked open data), the book focuses on the area of language acquisition because it involves complex and diverse data sets, cross-linguistic analyses, and urgent collaborative research. The contributors discuss a variety of research methods, resources, and infrastructures. Contributors Isabelle Barrière, Nan Bernstein Ratner, Steven Bird, Maria Blume, Ted Caldwell, Christian Chiarcos, Cristina Dye, Suzanne Flynn, Claire Foley, Nancy Ide, Carissa Kang, D. Terence Langendoen, Barbara Lust, Brian MacWhinney, Jonathan Masci, Steven Moran, Antonio Pareja-Lora, Jim Reidy, Oya Y. Rieger, Gary F. Simons, Thorsten Trippel, Kara Warburton, Sue Ellen Wright, Claus Zinn
Author | : Pete Warden |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 40 |
Release | : 2011-01-28 |
Genre | : Computers |
ISBN | : 1449303889 |
If you're a developer looking to supplement your own data tools and services, this concise ebook covers the most useful sources of public data available today. You'll find useful information on APIs that offer broad coverage, tie their data to the outside world, and are either accessible online or feature downloadable bulk data. You'll also find code and helpful links. This guide organizes APIs by the subjects they cover—such as websites, people, or places—so you can quickly locate the best resources for augmenting the data you handle in your own service. Categories include: Website tools such as WHOIS, bit.ly, and Compete Services that use email addresses as search terms, including Github Finding information from just a name, with APIs such as WhitePages Services, such as Klout, for locating people with Facebook and Twitter accounts Search APIs, including BOSS and Wikipedia Geographical data sources, including SimpleGeo and U.S. Census Company information APIs, such as CrunchBase and ZoomInfo APIs that list IP addresses, such as MaxMind Services that list books, films, music, and products
Author | : Agency for Health Care Research and Quality (U.S.) |
Publisher | : Government Printing Office |
Total Pages | : 236 |
Release | : 2013-02-21 |
Genre | : Medical |
ISBN | : 1587634236 |
This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)
Author | : Len Silverston |
Publisher | : John Wiley & Sons |
Total Pages | : 650 |
Release | : 2011-03-21 |
Genre | : Computers |
ISBN | : 1118080831 |
This third volume of the best-selling "Data Model Resource Book" series revolutionizes the data modeling discipline by answering the question "How can you save significant time while improving the quality of any type of data modeling effort?" In contrast to the first two volumes, this new volume focuses on the fundamental, underlying patterns that affect over 50 percent of most data modeling efforts. These patterns can be used to considerably reduce modeling time and cost, to jump-start data modeling efforts, as standards and guidelines to increase data model consistency and quality, and as an objective source against which an enterprise can evaluate data models.
Author | : Agency for Healthcare Research and Quality/AHRQ |
Publisher | : Government Printing Office |
Total Pages | : 385 |
Release | : 2014-04-01 |
Genre | : Medical |
ISBN | : 1587634333 |
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Author | : Gauri Misra |
Publisher | : Academic Press |
Total Pages | : 191 |
Release | : 2019-03-23 |
Genre | : Science |
ISBN | : 0128172800 |
Data Processing Handbook for Complex Biological Data provides relevant and to the point content for those who need to understand the different types of biological data and the techniques to process and interpret them. The book includes feedback the editor received from students studying at both undergraduate and graduate levels, and from her peers. In order to succeed in data processing for biological data sources, it is necessary to master the type of data and general methods and tools for modern data processing. For instance, many labs follow the path of interdisciplinary studies and get their data validated by several methods. Researchers at those labs may not perform all the techniques themselves, but either in collaboration or through outsourcing, they make use of a range of them, because, in the absence of cross validation using different techniques, the chances for acceptance of an article for publication in high profile journals is weakened. - Explains how to interpret enormous amounts of data generated using several experimental approaches in simple terms, thus relating biology and physics at the atomic level - Presents sample data files and explains the usage of equations and web servers cited in research articles to extract useful information from their own biological data - Discusses, in detail, raw data files, data processing strategies, and the web based sources relevant for data processing