Data Preparation for Analytics Using SAS

Data Preparation for Analytics Using SAS
Author: Gerhard Svolba
Publisher: SAS Institute
Total Pages: 373
Release: 2006-11-27
Genre: Computers
ISBN: 1629597902

Written for anyone involved in the data preparation process for analytics, Gerhard Svolba's Data Preparation for Analytics Using SAS offers practical advice in the form of SAS coding tips and tricks, and provides the reader with a conceptual background on data structures and considerations from a business point of view. The tasks addressed include viewing analytic data preparation in the context of its business environment, identifying the specifics of predictive modeling for data mart creation, understanding the concepts and considerations of data preparation for time series analysis, using various SAS procedures and SAS Enterprise Miner for scoring, creating meaningful derived variables for all data mart types, using powerful SAS macros to make changes among the various data mart structures, and more!

Data Preparation for Data Mining Using SAS

Data Preparation for Data Mining Using SAS
Author: Mamdouh Refaat
Publisher: Elsevier
Total Pages: 425
Release: 2010-07-27
Genre: Computers
ISBN: 0080491006

Are you a data mining analyst, who spends up to 80% of your time assuring data quality, then preparing that data for developing and deploying predictive models? And do you find lots of literature on data mining theory and concepts, but when it comes to practical advice on developing good mining views find little "how to information? And are you, like most analysts, preparing the data in SAS?This book is intended to fill this gap as your source of practical recipes. It introduces a framework for the process of data preparation for data mining, and presents the detailed implementation of each step in SAS. In addition, business applications of data mining modeling require you to deal with a large number of variables, typically hundreds if not thousands. Therefore, the book devotes several chapters to the methods of data transformation and variable selection. - A complete framework for the data preparation process, including implementation details for each step. - The complete SAS implementation code, which is readily usable by professional analysts and data miners. - A unique and comprehensive approach for the treatment of missing values, optimal binning, and cardinality reduction. - Assumes minimal proficiency in SAS and includes a quick-start chapter on writing SAS macros.

Data Quality for Analytics Using SAS

Data Quality for Analytics Using SAS
Author: Gerhard Svolba
Publisher: SAS Institute
Total Pages: 356
Release: 2012-04-01
Genre: Computers
ISBN: 1612902278

Analytics offers many capabilities and options to measure and improve data quality, and SAS is perfectly suited to these tasks. Gerhard Svolba's Data Quality for Analytics Using SAS focuses on selecting the right data sources and ensuring data quantity, relevancy, and completeness. The book is made up of three parts. The first part, which is conceptual, defines data quality and contains text, definitions, explanations, and examples. The second part shows how the data quality status can be profiled and the ways that data quality can be improved with analytical methods. The final part details the consequences of poor data quality for predictive modeling and time series forecasting. With this book you will learn how you can use SAS to perform advanced profiling of data quality status and how SAS can help improve your data quality. This book is part of the SAS Press program.

Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner

Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner
Author: Olivia Parr-Rud
Publisher: SAS Institute
Total Pages: 182
Release: 2014-10
Genre: Business & Economics
ISBN: 1629593273

This tutorial for data analysts new to SAS Enterprise Guide and SAS Enterprise Miner provides valuable experience using powerful statistical software to complete the kinds of business analytics common to most industries. This beginnner's guide with clear, illustrated, step-by-step instructions will lead you through examples based on business case studies. You will formulate the business objective, manage the data, and perform analyses that you can use to optimize marketing, risk, and customer relationship management, as well as business processes and human resources. Topics include descriptive analysis, predictive modeling and analytics, customer segmentation, market analysis, share-of-wallet analysis, penetration analysis, and business intelligence. --

Applying Data Science

Applying Data Science
Author: Gerhard Svolba
Publisher: SAS Institute
Total Pages: 490
Release: 2017-03-29
Genre: Computers
ISBN: 1635260566

See how data science can answer the questions your business faces! Applying Data Science: Business Case Studies Using SAS, by Gerhard Svolba, shows you the benefits of analytics, how to gain more insight into your data, and how to make better decisions. In eight entertaining and real-world case studies, Svolba combines data science and advanced analytics with business questions, illustrating them with data and SAS code. The case studies range from a variety of fields, including performing headcount survival analysis for employee retention, forecasting the demand for new projects, using Monte Carlo simulation to understand outcome distribution, among other topics. The data science methods covered include Kaplan-Meier estimates, Cox Proportional Hazard Regression, ARIMA models, Poisson regression, imputation of missing values, variable clustering, and much more! Written for business analysts, statisticians, data miners, data scientists, and SAS programmers, Applying Data Science bridges the gap between high-level, business-focused books that skimp on the details and technical books that only show SAS code with no business context.

Data Preparation for Analytics Using SAS

Data Preparation for Analytics Using SAS
Author: Gerhard Svolba
Publisher: SAS Institute
Total Pages: 440
Release: 2006-11-01
Genre: Computers
ISBN: 1599943360

Text addresses such tasks as: viewing analytic data preparation in the context of its business environment, identifying the specifics of predictive modeling for data mart creation, understanding the concepts and considerations of data preparation for time series analysis, and using SAS procedures for scoring.

Big Data Analytics with SAS

Big Data Analytics with SAS
Author: David Pope
Publisher: Packt Publishing Ltd
Total Pages: 258
Release: 2017-11-23
Genre: Computers
ISBN: 1788294319

Leverage the capabilities of SAS to process and analyze Big Data About This Book Combine SAS with platforms such as Hadoop, SAP HANA, and Cloud Foundry-based platforms for effecient Big Data analytics Learn how to use the web browser-based SAS Studio and iPython Jupyter Notebook interfaces with SAS Practical, real-world examples on predictive modeling, forecasting, optimizing and reporting your Big Data analysis with SAS Who This Book Is For SAS professionals and data analysts who wish to perform analytics on Big Data using SAS to gain actionable insights will find this book to be very useful. If you are a data science professional looking to perform large-scale analytics with SAS, this book will also help you. A basic understanding of SAS will be helpful, but is not mandatory. What You Will Learn Configure a free version of SAS in order do hands-on exercises dealing with data management, analysis, and reporting. Understand the basic concepts of the SAS language which consists of the data step (for data preparation) and procedures (or PROCs) for analysis. Make use of the web browser based SAS Studio and iPython Jupyter Notebook interfaces for coding in the SAS, DS2, and FedSQL programming languages. Understand how the DS2 programming language plays an important role in Big Data preparation and analysis using SAS Integrate and work efficiently with Big Data platforms like Hadoop, SAP HANA, and cloud foundry based systems. In Detail SAS has been recognized by Money Magazine and Payscale as one of the top business skills to learn in order to advance one's career. Through innovative data management, analytics, and business intelligence software and services, SAS helps customers solve their business problems by allowing them to make better decisions faster. This book introduces the reader to the SAS and how they can use SAS to perform efficient analysis on any size data, including Big Data. The reader will learn how to prepare data for analysis, perform predictive, forecasting, and optimization analysis and then deploy or report on the results of these analyses. While performing the coding examples within this book the reader will learn how to use the web browser based SAS Studio and iPython Jupyter Notebook interfaces for working with SAS. Finally, the reader will learn how SAS's architecture is engineered and designed to scale up and/or out and be combined with the open source offerings such as Hadoop, Python, and R. By the end of this book, you will be able to clearly understand how you can efficiently analyze Big Data using SAS. Style and approach The book starts off by introducing the reader to SAS and the SAS programming language which provides data management, analytical, and reporting capabilities. Most chapters include hands on examples which highlights how SAS provides The Power to Know©. The reader will learn that if they are looking to perform large-scale data analysis that SAS provides an open platform engineered and designed to scale both up and out which allows the power of SAS to combine with open source offerings such as Hadoop, Python, and R.

Machine Learning with SAS Viya

Machine Learning with SAS Viya
Author: SAS Institute Inc.
Publisher: SAS Institute
Total Pages: 295
Release: 2020-05-29
Genre: Computers
ISBN: 1951685377

Master machine learning with SAS Viya! Machine learning can feel intimidating for new practitioners. Machine Learning with SAS Viya provides everything you need to know to get started with machine learning in SAS Viya, including decision trees, neural networks, and support vector machines. The analytics life cycle is covered from data preparation and discovery to deployment. Working with open-source code? Machine Learning with SAS Viya has you covered – step-by-step instructions are given on how to use SAS Model Manager tools with open source. SAS Model Studio features are highlighted to show how to carry out machine learning in SAS Viya. Demonstrations, practice tasks, and quizzes are included to help sharpen your skills. In this book, you will learn about: Supervised and unsupervised machine learning Data preparation and dealing with missing and unstructured data Model building and selection Improving and optimizing models Model deployment and monitoring performance

The Data Detective's Toolkit

The Data Detective's Toolkit
Author: Kim Chantala
Publisher: SAS Institute
Total Pages: 125
Release: 2020-12-15
Genre: Computers
ISBN: 1952363020

Reduce the cost and time of cleaning, managing, and preparing research data while also improving data quality! Have you ever wished there was an easy way to reduce your workload and improve the quality of your data? The Data Detective’s Toolkit: Cutting-Edge Techniques and SAS Macros to Clean, Prepare, and Manage Data will help you automate many of the labor-intensive tasks needed to turn raw data into high-quality, analysis-ready data. You will find the right tools and techniques in this book to reduce the amount of time needed to clean, edit, validate, and document your data. These tools include SAS macros as well as ingenious ways of using SAS procedures and functions. The innovative logic built into the book’s macro programs enables you to monitor the quality of your data using information from the formats and labels created for the variables in your data set. The book explains how to harmonize data sets that need to be combined and automate data cleaning tasks to detect errors in data including out-of-range values, inconsistent flow through skip paths, missing data, no variation in values for a variable, and duplicates. By the end of this book, you will be able to automatically produce codebooks, crosswalks, and data catalogs.

An Introduction to SAS Visual Analytics

An Introduction to SAS Visual Analytics
Author: Tricia Aanderud
Publisher: SAS Institute
Total Pages: 294
Release: 2017-03-21
Genre: Computers
ISBN: 1635260442

Focusing on the version of SAS Visual Analytics on SAS 9.4, this thorough guide will show you how to make sense of your complex data with the goal of leading you to smarter, data-driven decisions without having to write a single line of code ¿̐ư unless you want to. --