Data Mining for Co-location Patterns

Data Mining for Co-location Patterns
Author: Guoqing Zhou
Publisher: CRC Press
Total Pages: 229
Release: 2022-01-26
Genre: Technology & Engineering
ISBN: 1000533433

Co-location pattern mining detects sets of features frequently located in close proximity to each other. This book focuses on data mining for co-location pattern, a valid method for identifying patterns from all types of data and applying them in business intelligence and analytics. It explains the fundamentals of co-location pattern mining, co-location decision tree, and maximal instance co-location pattern mining along with an in-depth overview of data mining, machine learning, and statistics. This arrangement of chapters helps readers understand the methods of co-location pattern mining step-by-step and their applications in pavement management, image classification, geospatial buffer analysis, etc.

Data Mining Patterns

Data Mining Patterns
Author: Pascal Poncelet
Publisher: IGI Global
Total Pages: 332
Release: 2008
Genre: Computers
ISBN:

"This book provides an overall view of recent solutions for mining, and explores new patterns, offering theoretical frameworks and presenting challenges and possible solutions concerning pattern extractions, emphasizing research techniques and real-world applications. It portrays research applications in data models, methodologies for mining patterns, multi-relational and multidimensional pattern mining, fuzzy data mining, data streaming and incremental mining"--Provided by publisher.

Data Mining the Web

Data Mining the Web
Author: Zdravko Markov
Publisher: John Wiley & Sons
Total Pages: 236
Release: 2007-04-06
Genre: Computers
ISBN: 0470108088

This book introduces the reader to methods of data mining on the web, including uncovering patterns in web content (classification, clustering, language processing), structure (graphs, hubs, metrics), and usage (modeling, sequence analysis, performance).

Data Mining for Association Rules and Sequential Patterns

Data Mining for Association Rules and Sequential Patterns
Author: Jean-Marc Adamo
Publisher: Springer Science & Business Media
Total Pages: 259
Release: 2012-12-06
Genre: Computers
ISBN: 1461300851

Recent advances in data collection, storage technologies, and computing power have made it possible for companies, government agencies and scientific laboratories to keep and manipulate vast amounts of data relating to their activities. This state-of-the-art monograph discusses essential algorithms for sophisticated data mining methods used with large-scale databases, focusing on two key topics: association rules and sequential pattern discovery. This will be an essential book for practitioners and professionals in computer science and computer engineering.

Patterns Identification and Data Mining in Weather and Climate

Patterns Identification and Data Mining in Weather and Climate
Author: Abdelwaheb Hannachi
Publisher: Springer Nature
Total Pages: 600
Release: 2021-05-06
Genre: Science
ISBN: 3030670732

Advances in computer power and observing systems has led to the generation and accumulation of large scale weather & climate data begging for exploration and analysis. Pattern Identification and Data Mining in Weather and Climate presents, from different perspectives, most available, novel and conventional, approaches used to analyze multivariate time series in climate science to identify patterns of variability, teleconnections, and reduce dimensionality. The book discusses different methods to identify patterns of spatiotemporal fields. The book also presents machine learning with a particular focus on the main methods used in climate science. Applications to atmospheric and oceanographic data are also presented and discussed in most chapters. To help guide students and beginners in the field of weather & climate data analysis, basic Matlab skeleton codes are given is some chapters, complemented with a list of software links toward the end of the text. A number of technical appendices are also provided, making the text particularly suitable for didactic purposes. The topic of EOFs and associated pattern identification in space-time data sets has gone through an extraordinary fast development, both in terms of new insights and the breadth of applications. We welcome this text by Abdel Hannachi who not only has a deep insight in the field but has himself made several contributions to new developments in the last 15 years. - Huug van den Dool, Climate Prediction Center, NCEP, College Park, MD, U.S.A. Now that weather and climate science is producing ever larger and richer data sets, the topic of pattern extraction and interpretation has become an essential part. This book provides an up to date overview of the latest techniques and developments in this area. - Maarten Ambaum, Department of Meteorology, University of Reading, U.K. This nicely and expertly written book covers a lot of ground, ranging from classical linear pattern identification techniques to more modern machine learning, illustrated with examples from weather & climate science. It will be very valuable both as a tutorial for graduate and postgraduate students and as a reference text for researchers and practitioners in the field. - Frank Kwasniok, College of Engineering, University of Exeter, U.K.

Frequent Pattern Mining

Frequent Pattern Mining
Author: Charu C. Aggarwal
Publisher: Springer
Total Pages: 480
Release: 2014-08-29
Genre: Computers
ISBN: 3319078216

This comprehensive reference consists of 18 chapters from prominent researchers in the field. Each chapter is self-contained, and synthesizes one aspect of frequent pattern mining. An emphasis is placed on simplifying the content, so that students and practitioners can benefit from the book. Each chapter contains a survey describing key research on the topic, a case study and future directions. Key topics include: Pattern Growth Methods, Frequent Pattern Mining in Data Streams, Mining Graph Patterns, Big Data Frequent Pattern Mining, Algorithms for Data Clustering and more. Advanced-level students in computer science, researchers and practitioners from industry will find this book an invaluable reference.

Data Mining and Machine Learning

Data Mining and Machine Learning
Author: Mohammed J. Zaki
Publisher: Cambridge University Press
Total Pages: 779
Release: 2020-01-30
Genre: Business & Economics
ISBN: 1108473989

New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.

Mining Sequential Patterns from Large Data Sets

Mining Sequential Patterns from Large Data Sets
Author: Wei Wang
Publisher: Springer Science & Business Media
Total Pages: 174
Release: 2005-07-26
Genre: Computers
ISBN: 0387242473

In many applications, e.g., bioinformatics, web access traces, system u- lization logs, etc., the data is naturally in the form of sequences. It has been of great interests to analyze the sequential data to find their inherent char- teristics. The sequential pattern is one of the most widely studied models to capture such characteristics. Examples of sequential patterns include but are not limited to protein sequence motifs and web page navigation traces. In this book, we focus on sequential pattern mining. To meet different needs of various applications, several models of sequential patterns have been proposed. We do not only study the mathematical definitions and application domains of these models, but also the algorithms on how to effectively and efficiently find these patterns. The objective of this book is to provide computer scientists and domain - perts such as life scientists with a set of tools in analyzing and understanding the nature of various sequences by : (1) identifying the specific model(s) of - quential patterns that are most suitable, and (2) providing an efficient algorithm for mining these patterns. Chapter 1 INTRODUCTION Data Mining is the process of extracting implicit knowledge and discovery of interesting characteristics and patterns that are not explicitly represented in the databases. The techniques can play an important role in understanding data and in capturing intrinsic relationships among data instances. Data mining has been an active research area in the past decade and has been proved to be very useful.

Solving Data Mining Problems Through Pattern Recognition

Solving Data Mining Problems Through Pattern Recognition
Author: Ruby L. Kennedy
Publisher: Prentice Hall
Total Pages: 424
Release: 1997
Genre: Computers
ISBN:

Data mining is an exploding technology increasingly used in major industries like finance, aerospace, and the medical industry. To truly take advantage of data mining capabilities, one must use and understand pattern recognition techniques. They are addressed in this book along with a tutorial on how to use the accompanying pattern software ("Pattern Recognition Workbench") on the CD-ROM.

Pattern Recognition Algorithms for Data Mining

Pattern Recognition Algorithms for Data Mining
Author: Sankar K. Pal
Publisher: CRC Press
Total Pages: 275
Release: 2004-05-27
Genre: Computers
ISBN: 1135436401

Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks. Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.