Data Mining: Introductory And Advanced Topics
Author | : Margaret H Dunham |
Publisher | : Pearson Education India |
Total Pages | : 332 |
Release | : 2006-09 |
Genre | : |
ISBN | : 9788177587852 |
Download Data Mining Introductory And Advanced Topics full books in PDF, epub, and Kindle. Read online free Data Mining Introductory And Advanced Topics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Margaret H Dunham |
Publisher | : Pearson Education India |
Total Pages | : 332 |
Release | : 2006-09 |
Genre | : |
ISBN | : 9788177587852 |
Author | : Jiawei Han |
Publisher | : Elsevier |
Total Pages | : 740 |
Release | : 2011-06-09 |
Genre | : Computers |
ISBN | : 0123814804 |
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Author | : David L. Olson |
Publisher | : Springer Science & Business Media |
Total Pages | : 182 |
Release | : 2008-01-01 |
Genre | : Business & Economics |
ISBN | : 354076917X |
This book covers the fundamental concepts of data mining, to demonstrate the potential of gathering large sets of data, and analyzing these data sets to gain useful business understanding. The book is organized in three parts. Part I introduces concepts. Part II describes and demonstrates basic data mining algorithms. It also contains chapters on a number of different techniques often used in data mining. Part III focuses on business applications of data mining.
Author | : Mohammed J. Zaki |
Publisher | : Cambridge University Press |
Total Pages | : 607 |
Release | : 2014-05-12 |
Genre | : Computers |
ISBN | : 0521766338 |
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Author | : Pang-Ning Tan |
Publisher | : Pearson Education India |
Total Pages | : 781 |
Release | : 2016 |
Genre | : |
ISBN | : 9332586055 |
Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. Each major topic is organized into two chapters, beginni
Author | : Soumen Chakrabarti |
Publisher | : Morgan Kaufmann |
Total Pages | : 477 |
Release | : 2008-10-31 |
Genre | : Computers |
ISBN | : 0080877885 |
This book brings all of the elements of data mining together in a single volume, saving the reader the time and expense of making multiple purchases. It consolidates both introductory and advanced topics, thereby covering the gamut of data mining and machine learning tactics ? from data integration and pre-processing, to fundamental algorithms, to optimization techniques and web mining methodology. The proposed book expertly combines the finest data mining material from the Morgan Kaufmann portfolio. Individual chapters are derived from a select group of MK books authored by the best and brightest in the field. These chapters are combined into one comprehensive volume in a way that allows it to be used as a reference work for those interested in new and developing aspects of data mining. This book represents a quick and efficient way to unite valuable content from leading data mining experts, thereby creating a definitive, one-stop-shopping opportunity for customers to receive the information they would otherwise need to round up from separate sources. - Chapters contributed by various recognized experts in the field let the reader remain up to date and fully informed from multiple viewpoints. - Presents multiple methods of analysis and algorithmic problem-solving techniques, enhancing the reader's technical expertise and ability to implement practical solutions. - Coverage of both theory and practice brings all of the elements of data mining together in a single volume, saving the reader the time and expense of making multiple purchases.
Author | : Michael J. A. Berry |
Publisher | : John Wiley & Sons |
Total Pages | : 671 |
Release | : 2004-04-09 |
Genre | : Business & Economics |
ISBN | : 0471470643 |
Many companies have invested in building large databases and data warehouses capable of storing vast amounts of information. This book offers business, sales and marketing managers a practical guide to accessing such information.
Author | : David J. Hand |
Publisher | : MIT Press |
Total Pages | : 594 |
Release | : 2001-08-17 |
Genre | : Computers |
ISBN | : 9780262082907 |
The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.
Author | : Igor Kononenko |
Publisher | : Horwood Publishing |
Total Pages | : 484 |
Release | : 2007-04-30 |
Genre | : Computers |
ISBN | : 9781904275213 |
Good data mining practice for business intelligence (the art of turning raw software into meaningful information) is demonstrated by the many new techniques and developments in the conversion of fresh scientific discovery into widely accessible software solutions. Written as an introduction to the main issues associated with the basics of machine learning and the algorithms used in data mining, this text is suitable foradvanced undergraduates, postgraduates and tutors in a wide area of computer science and technology, as well as researchers looking to adapt various algorithms for particular data mining tasks. A valuable addition to libraries and bookshelves of the many companies who are using the principles of data mining to effectively deliver solid business and industry solutions.
Author | : Rohit Raja |
Publisher | : John Wiley & Sons |
Total Pages | : 500 |
Release | : 2022-03-02 |
Genre | : Computers |
ISBN | : 1119791782 |
DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration. Data, the latest currency of today’s world, is the new gold. In this new form of gold, the most beautiful jewels are data analytics and machine learning. Data mining and machine learning are considered interdisciplinary fields. Data mining is a subset of data analytics and machine learning involves the use of algorithms that automatically improve through experience based on data. Massive datasets can be classified and clustered to obtain accurate results. The most common technologies used include classification and clustering methods. Accuracy and error rates are calculated for regression and classification and clustering to find actual results through algorithms like support vector machines and neural networks with forward and backward propagation. Applications include fraud detection, image processing, medical diagnosis, weather prediction, e-commerce and so forth. The book features: A review of the state-of-the-art in data mining and machine learning, A review and description of the learning methods in human-computer interaction, Implementation strategies and future research directions used to meet the design and application requirements of several modern and real-time applications for a long time, The scope and implementation of a majority of data mining and machine learning strategies. A discussion of real-time problems. Audience Industry and academic researchers, scientists, and engineers in information technology, data science and machine and deep learning, as well as artificial intelligence more broadly.