Data Mining And Statistical Analysis Using Sql
Download Data Mining And Statistical Analysis Using Sql full books in PDF, epub, and Kindle. Read online free Data Mining And Statistical Analysis Using Sql ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : John Lovett |
Publisher | : Apress |
Total Pages | : 423 |
Release | : 2008-01-01 |
Genre | : Computers |
ISBN | : 1430208554 |
This book is not just another theoretical text on statistics or data mining. Instead, it's designed for database administrators who want to buttress their understanding of statistics to support data mining and customer relationship management analytics and who want to use Structured Query Language (SQL). Each chapter is independent and self-contained with examples tailored to business applications. Each analysis technique is expressed in a mathematical format that lends itself to coding either as a database query or as a Visual Basic procedure using SQL. Each chapter includes: formulas (how to perform the required analysis, numerical example using data from a database, data visualization and presentation options (graphs, charts, tables), SQL procedures for extracting the desired results, and data mining techniques.
Author | : Gordon S. Linoff |
Publisher | : John Wiley & Sons |
Total Pages | : 698 |
Release | : 2010-09-16 |
Genre | : Computers |
ISBN | : 0470952520 |
Useful business analysis requires you to effectively transform data into actionable information. This book helps you use SQL and Excel to extract business information from relational databases and use that data to define business dimensions, store transactions about customers, produce results, and more. Each chapter explains when and why to perform a particular type of business analysis in order to obtain useful results, how to design and perform the analysis using SQL and Excel, and what the results should look like.
Author | : Ken Yale |
Publisher | : Elsevier |
Total Pages | : 824 |
Release | : 2017-11-09 |
Genre | : Mathematics |
ISBN | : 0124166458 |
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Author | : R. Trueblood |
Publisher | : |
Total Pages | : |
Release | : 2001 |
Genre | : |
ISBN | : 9781893005549 |
Author | : Mehmed Kantardzic |
Publisher | : John Wiley & Sons |
Total Pages | : 663 |
Release | : 2019-10-21 |
Genre | : Computers |
ISBN | : 111951598X |
Presents the latest techniques for analyzing and extracting information from large amounts of data in high-dimensional data spaces The revised and updated third edition of Data Mining contains in one volume an introduction to a systematic approach to the analysis of large data sets that integrates results from disciplines such as statistics, artificial intelligence, data bases, pattern recognition, and computer visualization. Advances in deep learning technology have opened an entire new spectrum of applications. The author—a noted expert on the topic—explains the basic concepts, models, and methodologies that have been developed in recent years. This new edition introduces and expands on many topics, as well as providing revised sections on software tools and data mining applications. Additional changes include an updated list of references for further study, and an extended list of problems and questions that relate to each chapter.This third edition presents new and expanded information that: • Explores big data and cloud computing • Examines deep learning • Includes information on convolutional neural networks (CNN) • Offers reinforcement learning • Contains semi-supervised learning and S3VM • Reviews model evaluation for unbalanced data Written for graduate students in computer science, computer engineers, and computer information systems professionals, the updated third edition of Data Mining continues to provide an essential guide to the basic principles of the technology and the most recent developments in the field.
Author | : Upom Malik |
Publisher | : |
Total Pages | : 386 |
Release | : 2019-08-22 |
Genre | : Computers |
ISBN | : 9781789807356 |
Take your first steps to become a fully qualified data analyst by learning how to explore large relational datasets. Key Features Explore a variety of statistical techniques to analyze your data Integrate your SQL pipelines with other analytics technologies Perform advanced analytics such as geospatial and text analysis Book Description Understanding and finding patterns in data has become one of the most important ways to improve business decisions. If you know the basics of SQL, but don't know how to use it to gain business insights from data, this book is for you. SQL for Data Analytics covers everything you need progress from simply knowing basic SQL to telling stories and identifying trends in data. You'll be able to start exploring your data by identifying patterns and unlocking deeper insights. You'll also gain experience working with different types of data in SQL, including time-series, geospatial, and text data. Finally, you'll understand how to become productive with SQL with the help of profiling and automation to gain insights faster. By the end of the book, you'll able to use SQL in everyday business scenarios efficiently and look at data with the critical eye of analytics professional. What you will learn Use SQL to summarize and identify patterns in data Apply special SQL clauses and functions to generate descriptive statistics Use SQL queries and subqueries to prepare data for analysis Perform advanced statistical calculations using the window function Analyze special data types in SQL, including geospatial data and time data Import and export data using a text file and PostgreSQL Debug queries that won't run Optimize queries to improve their performance for faster results Who this book is for If you're a database engineer looking to transition into analytics, or a backend engineer who wants to develop a deeper understanding of production data, you will find this book useful. This book is also ideal for data scientists or business analysts who want to improve their data analytics skills using SQL. Knowledge of basic SQL and database concepts will aid in understanding the concepts covered in this book.
Author | : Antonio Badia |
Publisher | : Springer Nature |
Total Pages | : 290 |
Release | : 2020-11-09 |
Genre | : Computers |
ISBN | : 3030575926 |
This textbook explains SQL within the context of data science and introduces the different parts of SQL as they are needed for the tasks usually carried out during data analysis. Using the framework of the data life cycle, it focuses on the steps that are very often given the short shift in traditional textbooks, like data loading, cleaning and pre-processing. The book is organized as follows. Chapter 1 describes the data life cycle, i.e. the sequence of stages from data acquisition to archiving, that data goes through as it is prepared and then actually analyzed, together with the different activities that take place at each stage. Chapter 2 gets into databases proper, explaining how relational databases organize data. Non-traditional data, like XML and text, are also covered. Chapter 3 introduces SQL queries, but unlike traditional textbooks, queries and their parts are described around typical data analysis tasks like data exploration, cleaning and transformation. Chapter 4 introduces some basic techniques for data analysis and shows how SQL can be used for some simple analyses without too much complication. Chapter 5 introduces additional SQL constructs that are important in a variety of situations and thus completes the coverage of SQL queries. Lastly, chapter 6 briefly explains how to use SQL from within R and from within Python programs. It focuses on how these languages can interact with a database, and how what has been learned about SQL can be leveraged to make life easier when using R or Python. All chapters contain a lot of examples and exercises on the way, and readers are encouraged to install the two open-source database systems (MySQL and Postgres) that are used throughout the book in order to practice and work on the exercises, because simply reading the book is much less useful than actually using it. This book is for anyone interested in data science and/or databases. It just demands a bit of computer fluency, but no specific background on databases or data analysis. All concepts are introduced intuitively and with a minimum of specialized jargon. After going through this book, readers should be able to profitably learn more about data mining, machine learning, and database management from more advanced textbooks and courses.
Author | : Simeon Simoff |
Publisher | : Springer Science & Business Media |
Total Pages | : 417 |
Release | : 2008-07-18 |
Genre | : Computers |
ISBN | : 3540710795 |
The importance of visual data mining, as a strong sub-discipline of data mining, had already been recognized in the beginning of the decade. In 2005 a panel of renowned individuals met to address the shortcomings and drawbacks of the current state of visual information processing. The need for a systematic and methodological development of visual analytics was detected. This book aims at addressing this need. Through a collection of 21 contributions selected from more than 46 submissions, it offers a systematic presentation of the state of the art in the field. The volume is structured in three parts on theory and methodologies, techniques, and tools and applications.
Author | : Wang, John |
Publisher | : IGI Global |
Total Pages | : 3296 |
Release | : 2023-01-20 |
Genre | : Computers |
ISBN | : 1799892212 |
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Author | : Jiawei Han |
Publisher | : Elsevier |
Total Pages | : 740 |
Release | : 2011-06-09 |
Genre | : Computers |
ISBN | : 0123814804 |
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data