Data Mining And Knowledge Discovery Via Logic Based Methods
Download Data Mining And Knowledge Discovery Via Logic Based Methods full books in PDF, epub, and Kindle. Read online free Data Mining And Knowledge Discovery Via Logic Based Methods ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Evangelos Triantaphyllou |
Publisher | : Springer Science & Business Media |
Total Pages | : 371 |
Release | : 2010-06-08 |
Genre | : Computers |
ISBN | : 144191630X |
The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.
Author | : Evangelos Triantaphyllou |
Publisher | : Springer Science & Business Media |
Total Pages | : 784 |
Release | : 2006-09-10 |
Genre | : Computers |
ISBN | : 0387342966 |
This book outlines the core theory and practice of data mining and knowledge discovery (DM & KD) examining theoretical foundations for various methods, and presenting an array of examples, many drawn from real-life applications. Most theoretical developments are accompanied by extensive empirical analysis, offering a deep insight into both theoretical and practical aspects of the subject. The book presents the combined research experiences of 40 expert contributors of world renown.
Author | : Jan Zytkow |
Publisher | : Springer Science & Business Media |
Total Pages | : 608 |
Release | : 1999-09-01 |
Genre | : Computers |
ISBN | : 3540664904 |
This book constitutes the refereed proceedings of the Third European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD'99, held in Prague, Czech Republic in September 1999. The 28 revised full papers and 48 poster presentations were carefully reviewed and selected from 106 full papers submitted. The papers are organized in topical sections on time series, applications, taxonomies and partitions, logic methods, distributed and multirelational databases, text mining and feature selection, rules and induction, and interesting and unusual issues.
Author | : Oded Maimon |
Publisher | : Springer Science & Business Media |
Total Pages | : 1378 |
Release | : 2006-05-28 |
Genre | : Computers |
ISBN | : 038725465X |
Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.
Author | : Usama M. Fayyad |
Publisher | : |
Total Pages | : 638 |
Release | : 1996 |
Genre | : Computers |
ISBN | : |
Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.
Author | : Lutz H. Hamel |
Publisher | : John Wiley & Sons |
Total Pages | : 211 |
Release | : 2011-09-20 |
Genre | : Computers |
ISBN | : 1118211030 |
An easy-to-follow introduction to support vector machines This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover: Knowledge discovery environments Describing data mathematically Linear decision surfaces and functions Perceptron learning Maximum margin classifiers Support vector machines Elements of statistical learning theory Multi-class classification Regression with support vector machines Novelty detection Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas.
Author | : Felici, Giovanni |
Publisher | : IGI Global |
Total Pages | : 394 |
Release | : 2007-10-31 |
Genre | : Computers |
ISBN | : 1599045303 |
"This book focuses on the mathematical models and methods that support most data mining applications and solution techniques, covering such topics as association rules; Bayesian methods; data visualization; kernel methods; neural networks; text, speech, and image recognition; an invaluable resource for scholars and practitioners in the fields of biomedicine, engineering, finance, manufacturing, marketing, performance measurement, and telecommunications"--Provided by publisher.
Author | : Saso Dzeroski |
Publisher | : Springer Science & Business Media |
Total Pages | : 422 |
Release | : 2001-08 |
Genre | : Business & Economics |
ISBN | : 9783540422891 |
As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.
Author | : Krzysztof J. Cios |
Publisher | : Springer Science & Business Media |
Total Pages | : 601 |
Release | : 2007-10-05 |
Genre | : Computers |
ISBN | : 0387367950 |
This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.
Author | : Oded Maimon |
Publisher | : World Scientific Publishing Company |
Total Pages | : 344 |
Release | : 2005-05-30 |
Genre | : Computers |
ISBN | : 9813106441 |
Data Mining is the science and technology of exploring data in order to discover previously unknown patterns. It is a part of the overall process of Knowledge Discovery in Databases (KDD). The accessibility and abundance of information today makes data mining a matter of considerable importance and necessity. This book provides an introduction to the field with an emphasis on advanced decomposition methods in general data mining tasks and for classification tasks in particular. The book presents a complete methodology for decomposing classification problems into smaller and more manageable sub-problems that are solvable by using existing tools. The various elements are then joined together to solve the initial problem. The benefits of decomposition methodology in data mining include: increased performance (classification accuracy); conceptual simplification of the problem; enhanced feasibility for huge databases; clearer and more comprehensible results; reduced runtime by solving smaller problems and by using parallel/distributed computation; and the opportunity of using different techniques for individual sub-problems.