Data Classification And Incremental Clustering In Data Mining And Machine Learning
Download Data Classification And Incremental Clustering In Data Mining And Machine Learning full books in PDF, epub, and Kindle. Read online free Data Classification And Incremental Clustering In Data Mining And Machine Learning ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sanjay Chakraborty |
Publisher | : Springer Nature |
Total Pages | : 210 |
Release | : 2022-05-10 |
Genre | : Technology & Engineering |
ISBN | : 3030930882 |
This book is a comprehensive, hands-on guide to the basics of data mining and machine learning with a special emphasis on supervised and unsupervised learning methods. The book lays stress on the new ways of thinking needed to master in machine learning based on the Python, R, and Java programming platforms. This book first provides an understanding of data mining, machine learning and their applications, giving special attention to classification and clustering techniques. The authors offer a discussion on data mining and machine learning techniques with case studies and examples. The book also describes the hands-on coding examples of some well-known supervised and unsupervised learning techniques using three different and popular coding platforms: R, Python, and Java. This book explains some of the most popular classification techniques (K-NN, Naïve Bayes, Decision tree, Random forest, Support vector machine etc,) along with the basic description of artificial neural network and deep neural network. The book is useful for professionals, students studying data mining and machine learning, and researchers in supervised and unsupervised learning techniques.
Author | : Oded Maimon |
Publisher | : Springer Science & Business Media |
Total Pages | : 1378 |
Release | : 2006-05-28 |
Genre | : Computers |
ISBN | : 038725465X |
Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.
Author | : Samiksha Shukla |
Publisher | : Springer Nature |
Total Pages | : 568 |
Release | : |
Genre | : |
ISBN | : 981970975X |
Author | : Juan J. Cuadrado-Gallego |
Publisher | : Springer Nature |
Total Pages | : 486 |
Release | : 2023-11-30 |
Genre | : Computers |
ISBN | : 3031391292 |
Building upon the knowledge introduced in The Data Science Framework, this book provides a comprehensive and detailed examination of each aspect of Data Analytics, both from a theoretical and practical standpoint. The book explains representative algorithms associated with different techniques, from their theoretical foundations to their implementation and use with software tools. Designed as a textbook for a Data Analytics Fundamentals course, it is divided into seven chapters to correspond with 16 weeks of lessons, including both theoretical and practical exercises. Each chapter is dedicated to a lesson, allowing readers to dive deep into each topic with detailed explanations and examples. Readers will learn the theoretical concepts and then immediately apply them to practical exercises to reinforce their knowledge. And in the lab sessions, readers will learn the ins and outs of the R environment and data science methodology to solve exercises with the R language. With detailed solutions provided for all examples and exercises, readers can use this book to study and master data analytics on their own. Whether you're a student, professional, or simply curious about data analytics, this book is a must-have for anyone looking to expand their knowledge in this exciting field.
Author | : Poncelet, Pascal |
Publisher | : IGI Global |
Total Pages | : 324 |
Release | : 2007-08-31 |
Genre | : Computers |
ISBN | : 1599041642 |
"This book provides an overall view of recent solutions for mining, and explores new patterns,offering theoretical frameworks and presenting challenges and possible solutions concerning pattern extractions, emphasizing research techniques and real-world applications. It portrays research applications in data models, methodologies for mining patterns, multi-relational and multidimensional pattern mining, fuzzy data mining, data streaming and incremental mining"--Provided by publisher.
Author | : Theophano Mitsa |
Publisher | : CRC Press |
Total Pages | : 398 |
Release | : 2010-03-10 |
Genre | : Business & Economics |
ISBN | : 1420089773 |
From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.
Author | : Wang, John |
Publisher | : IGI Global |
Total Pages | : 4092 |
Release | : 2008-05-31 |
Genre | : Technology & Engineering |
ISBN | : 159904952X |
In recent years, the science of managing and analyzing large datasets has emerged as a critical area of research. In the race to answer vital questions and make knowledgeable decisions, impressive amounts of data are now being generated at a rapid pace, increasing the opportunities and challenges associated with the ability to effectively analyze this data.
Author | : Jiawei Han |
Publisher | : Morgan Kaufmann |
Total Pages | : 786 |
Release | : 2022-07-02 |
Genre | : Computers |
ISBN | : 0128117613 |
Data Mining: Concepts and Techniques, Fourth Edition introduces concepts, principles, and methods for mining patterns, knowledge, and models from various kinds of data for diverse applications. Specifically, it delves into the processes for uncovering patterns and knowledge from massive collections of data, known as knowledge discovery from data, or KDD. It focuses on the feasibility, usefulness, effectiveness, and scalability of data mining techniques for large data sets. After an introduction to the concept of data mining, the authors explain the methods for preprocessing, characterizing, and warehousing data. They then partition the data mining methods into several major tasks, introducing concepts and methods for mining frequent patterns, associations, and correlations for large data sets; data classificcation and model construction; cluster analysis; and outlier detection. Concepts and methods for deep learning are systematically introduced as one chapter. Finally, the book covers the trends, applications, and research frontiers in data mining. - Presents a comprehensive new chapter on deep learning, including improving training of deep learning models, convolutional neural networks, recurrent neural networks, and graph neural networks - Addresses advanced topics in one dedicated chapter: data mining trends and research frontiers, including mining rich data types (text, spatiotemporal data, and graph/networks), data mining applications (such as sentiment analysis, truth discovery, and information propagattion), data mining methodologie and systems, and data mining and society - Provides a comprehensive, practical look at the concepts and techniques needed to get the most out of your data - Visit the author-hosted companion site, https://hanj.cs.illinois.edu/bk4/ for downloadable lecture slides and errata
Author | : Madhu Jain |
Publisher | : CRC Press |
Total Pages | : 425 |
Release | : 2023-06-07 |
Genre | : Computers |
ISBN | : 1000885550 |
The text focuses on mathematical modeling and applications of advanced techniques of machine learning, and artificial intelligence, including artificial neural networks, evolutionary computing, data mining, and fuzzy systems to solve performance and design issues more precisely. Intelligent computing encompasses technologies, algorithms, and models in providing effective and efficient solutions to a wide range of problems, including the airport’s intelligent safety system. It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in fields that include industrial engineering, manufacturing engineering, computer engineering, and mathematics. The book: Discusses mathematical modeling for traffic, sustainable supply chain, vehicular Ad-Hoc networks, and internet of things networks with intelligent gateways Covers advanced machine learning, artificial intelligence, fuzzy systems, evolutionary computing, and data mining techniques for real- world problems Presents applications of mathematical models in chronic diseases such as kidney and coronary artery diseases Highlights advances in mathematical modeling, strength, and benefits of machine learning and artificial intelligence, including driving goals, applicability, algorithms, and processes involved Showcases emerging real-life topics on mathematical models, machine learning, and intelligent computing using an interdisciplinary approach The text presents emerging real-life topics on mathematical models, machine learning, and intelligent computing in a single volume. It will serve as an ideal text for senior undergraduate students, graduate students, and researchers in diverse fields, including industrial and manufacturing engineering, computer engineering, and mathematics.
Author | : Mark Last |
Publisher | : World Scientific |
Total Pages | : 196 |
Release | : 2018-01-12 |
Genre | : Computers |
ISBN | : 9813228059 |
This compendium is a completely revised version of an earlier book, Data Mining in Time Series Databases, by the same editors. It provides a unique collection of new articles written by leading experts that account for the latest developments in the field of time series and data stream mining.The emerging topics covered by the book include weightless neural modeling for mining data streams, using ensemble classifiers for imbalanced and evolving data streams, document stream mining with active learning, and many more. In particular, it addresses the domain of streaming data, which has recently become one of the emerging topics in Data Science, Big Data, and related areas. Existing titles do not provide sufficient information on this topic.