Data Analytics for Drilling Engineering

Data Analytics for Drilling Engineering
Author: Qilong Xue
Publisher: Springer Nature
Total Pages: 324
Release: 2019-12-30
Genre: Science
ISBN: 303034035X

This book presents the signal processing and data mining challenges encountered in drilling engineering, and describes the methods used to overcome them. In drilling engineering, many signal processing technologies are required to solve practical problems, such as downhole information transmission, spatial attitude of drillstring, drillstring dynamics, seismic activity while drilling, among others. This title attempts to bridge the gap between the signal processing and data mining and oil and gas drilling engineering communities. There is an urgent need to summarize signal processing and data mining issues in drilling engineering so that practitioners in these fields can understand each other in order to enhance oil and gas drilling functions. In summary, this book shows the importance of signal processing and data mining to researchers and professional drilling engineers and open up a new area of application for signal processing and data mining scientists.

Data Analytics in Reservoir Engineering

Data Analytics in Reservoir Engineering
Author: Sathish Sankaran
Publisher:
Total Pages: 108
Release: 2020-10-29
Genre:
ISBN: 9781613998205

Data Analytics in Reservoir Engineering describes the relevance of data analytics for the oil and gas industry, with particular emphasis on reservoir engineering.

Machine Learning and Data Science in the Oil and Gas Industry

Machine Learning and Data Science in the Oil and Gas Industry
Author: Patrick Bangert
Publisher: Gulf Professional Publishing
Total Pages: 290
Release: 2021-03-04
Genre: Science
ISBN: 0128209143

Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value. - Chart an overview of the techniques and tools of machine learning including all the non-technological aspects necessary to be successful - Gain practical understanding of machine learning used in oil and gas operations through contributed case studies - Learn change management skills that will help gain confidence in pursuing the technology - Understand the workflow of a full-scale project and where machine learning benefits (and where it does not)

Shale Analytics

Shale Analytics
Author: Shahab D. Mohaghegh
Publisher: Springer
Total Pages: 292
Release: 2017-02-09
Genre: Technology & Engineering
ISBN: 3319487531

This book describes the application of modern information technology to reservoir modeling and well management in shale. While covering Shale Analytics, it focuses on reservoir modeling and production management of shale plays, since conventional reservoir and production modeling techniques do not perform well in this environment. Topics covered include tools for analysis, predictive modeling and optimization of production from shale in the presence of massive multi-cluster, multi-stage hydraulic fractures. Given the fact that the physics of storage and fluid flow in shale are not well-understood and well-defined, Shale Analytics avoids making simplifying assumptions and concentrates on facts (Hard Data - Field Measurements) to reach conclusions. Also discussed are important insights into understanding completion practices and re-frac candidate selection and design. The flexibility and power of the technique is demonstrated in numerous real-world situations.

Applied Drilling Engineering

Applied Drilling Engineering
Author: Adam T. Bourgoyne
Publisher:
Total Pages: 522
Release: 1986
Genre: Business & Economics
ISBN:

Applied Drilling Engineering presents engineering science fundamentals as well as examples of engineering applications involving those fundamentals.

Drilling Data Vortex

Drilling Data Vortex
Author: Carlos Damski
Publisher: Genesis Publishing and Services Pty Limited
Total Pages: 138
Release: 2014-11-10
Genre:
ISBN: 9780994164209

In today's world, traditional methods of drilling oil wells don't work. Yesterday's practices are being superseded by a universal trend towards the extensive use of historical and real-time data to understand, learn and predict all well intervention operations. This book explores the impact of data analytics on well operations. Drawn from the author's extensive experience in data analysis, it examines, in easily understandable terms, today's data management processes. The book explores issues related to: Basic concepts of data management for drilling; Methods of using data as a basis for improving and optimizing process control; Achieving a common understanding of the issues involved among information technology personnel and field engineers; A roadmap for the implementation of a drilling process improvement system; Business Intelligence as the ultimate goal of any data management process; Discussions about data acquisition, quality control, storage, retrieval and analyses; Map intelligence; Understanding operational time and trouble analyses; learning curve, technical limit and benchmarking; Real business cases to illustrate the concepts explored in the book. The book is designed for a broad audience, including drilling personnel, managers, data analysts, and all professionals involved in the use of data to improve drilling operations.

Machine Learning Guide for Oil and Gas Using Python

Machine Learning Guide for Oil and Gas Using Python
Author: Hoss Belyadi
Publisher: Gulf Professional Publishing
Total Pages: 478
Release: 2021-04-09
Genre: Science
ISBN: 0128219300

Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges. - Helps readers understand how open-source Python can be utilized in practical oil and gas challenges - Covers the most commonly used algorithms for both supervised and unsupervised learning - Presents a balanced approach of both theory and practicality while progressing from introductory to advanced analytical techniques

Methods for Petroleum Well Optimization

Methods for Petroleum Well Optimization
Author: Rasool Khosravanian
Publisher: Gulf Professional Publishing
Total Pages: 554
Release: 2021-09-22
Genre: Science
ISBN: 0323902324

Drilling and production wells are becoming more digitalized as oil and gas companies continue to implement machine learning andbig data solutions to save money on projects while reducing energy and emissions. Up to now there has not been one cohesiveresource that bridges the gap between theory and application, showing how to go from computer modeling to practical use. Methodsfor Petroleum Well Optimization: Automation and Data Solutions gives today's engineers and researchers real-time data solutionsspecific to drilling and production assets. Structured for training, this reference covers key concepts and detailed approaches frommathematical to real-time data solutions through technological advances. Topics include digital well planning and construction,moving teams into Onshore Collaboration Centers, operations with the best machine learning (ML) and metaheuristic algorithms,complex trajectories for wellbore stability, real-time predictive analytics by data mining, optimum decision-making, and case-basedreasoning. Supported by practical case studies, and with references including links to open-source code and fit-for-use MATLAB, R,Julia, Python and other standard programming languages, Methods for Petroleum Well Optimization delivers a critical training guidefor researchers and oil and gas engineers to take scientifically based approaches to solving real field problems. - Bridges the gap between theory and practice (from models to code) with content from the latest research developments supported by practical case study examples and questions at the end of each chapter - Enables understanding of real-time data solutions and automation methods available specific to drilling and production wells, suchas digital well planning and construction through to automatic systems - Promotes the use of open-source code which will help companies, engineers, and researchers develop their prediction and analysissoftware more quickly; this is especially appropriate in the application of multivariate techniques to the real-world problems of petroleum well optimization

Machine Learning in the Oil and Gas Industry

Machine Learning in the Oil and Gas Industry
Author: Yogendra Narayan Pandey
Publisher: Apress
Total Pages: 300
Release: 2020-11-03
Genre: Computers
ISBN: 9781484260937

Apply machine and deep learning to solve some of the challenges in the oil and gas industry. The book begins with a brief discussion of the oil and gas exploration and production life cycle in the context of data flow through the different stages of industry operations. This leads to a survey of some interesting problems, which are good candidates for applying machine and deep learning approaches. The initial chapters provide a primer on the Python programming language used for implementing the algorithms; this is followed by an overview of supervised and unsupervised machine learning concepts. The authors provide industry examples using open source data sets along with practical explanations of the algorithms, without diving too deep into the theoretical aspects of the algorithms employed. Machine Learning in the Oil and Gas Industry covers problems encompassing diverse industry topics, including geophysics (seismic interpretation), geological modeling, reservoir engineering, and production engineering. Throughout the book, the emphasis is on providing a practical approach with step-by-step explanations and code examples for implementing machine and deep learning algorithms for solving real-life problems in the oil and gas industry. What You Will Learn Understanding the end-to-end industry life cycle and flow of data in the industrial operations of the oil and gas industry Get the basic concepts of computer programming and machine and deep learning required for implementing the algorithms used Study interesting industry problems that are good candidates for being solved by machine and deep learning Discover the practical considerations and challenges for executing machine and deep learning projects in the oil and gas industry Who This Book Is For Professionals in the oil and gas industry who can benefit from a practical understanding of the machine and deep learning approach to solving real-life problems.

Soft Computing and Intelligent Data Analysis in Oil Exploration

Soft Computing and Intelligent Data Analysis in Oil Exploration
Author: M. Nikravesh
Publisher: Elsevier
Total Pages: 755
Release: 2003-04-22
Genre: Science
ISBN: 0080541321

This comprehensive book highlights soft computing and geostatistics applications in hydrocarbon exploration and production, combining practical and theoretical aspects.It spans a wide spectrum of applications in the oil industry, crossing many discipline boundaries such as geophysics, geology, petrophysics and reservoir engineering. It is complemented by several tutorial chapters on fuzzy logic, neural networks and genetic algorithms and geostatistics to introduce these concepts to the uninitiated. The application areas include prediction of reservoir properties (porosity, sand thickness, lithology, fluid), seismic processing, seismic and bio stratigraphy, time lapse seismic and core analysis.There is a good balance between introducing soft computing and geostatistics methodologies that are not routinely used in the petroleum industry and various applications areas. The book can be used by many practitioners such as processing geophysicists, seismic interpreters, geologists, reservoir engineers, petrophysicist, geostatistians, asset mangers and technology application professionals. It will also be of interest to academics to assess the importance of, and contribute to, R&D efforts in relevant areas.