Curves And Fractal Dimension
Download Curves And Fractal Dimension full books in PDF, epub, and Kindle. Read online free Curves And Fractal Dimension ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Claude Tricot |
Publisher | : Springer Science & Business Media |
Total Pages | : 362 |
Release | : 1994-11-18 |
Genre | : Mathematics |
ISBN | : 9780387940953 |
Written for mathematicians, engineers, and researchers in experimental science, as well as anyone interested in fractals, this book explains the geometrical and analytical properties of trajectories, aggregate contours, geographical coastlines, profiles of rough surfaces, and other curves of finite and fractal length. The approach is by way of precise definitions from which properties are deduced and applications and computational methods are derived. Written without the traditional heavy symbolism of mathematics texts, this book requires two years of calculus while also containing material appropriate for graduate coursework in curve analysis and/or fractal dimension.
Author | : Jeffrey Ventrella |
Publisher | : Eyebrain Books |
Total Pages | : 154 |
Release | : 2019-07 |
Genre | : Computers |
ISBN | : 9780983054634 |
This book explains a taxonomy of plane-filling curves (fractal curves with a fractal dimension of 2). it includes the classic fractal curves described in Mandelbrot's original book. Many new fractal curves are introduced. The taxonomy is based upon the Gaussian integers and the Eisenstein integers - each forming a lattice (square and triangular). These lattices have algebraic properties, which allows number theory to be used in describing and classifying these curves. This work has been under development for over 30 years. An earlier version of this taxonomy is described in the book ""Brain-filling Curves"", also by Jeffrey Ventrella. More on plane-filling curves can be found at fractalcurves.com
Author | : David D. Nolte |
Publisher | : Oxford University Press |
Total Pages | : 384 |
Release | : 2018-07-12 |
Genre | : Science |
ISBN | : 0192528505 |
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Author | : Jeffrey Ventrella |
Publisher | : Lulu.com |
Total Pages | : 206 |
Release | : 2012-03-01 |
Genre | : Computers |
ISBN | : 0983054622 |
* A lovingly-crafted visual expedition, lead by a lifelong fractal wizard with an obsession for categorizing fractal species * Hundreds of beautiful color images * An in-depth taxonomy of Koch-constructed Fractal Curves * An intuitive introduction to Koch construction * A must-read for anyone interested in fractal geometry
Author | : K. J. Falconer |
Publisher | : Cambridge University Press |
Total Pages | : 184 |
Release | : 1985 |
Genre | : Mathematics |
ISBN | : 9780521337052 |
A mathematical study of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Considers questions of local density, the existence of tangents of such sets as well as the dimensional properties of their projections in various directions.
Author | : Christopher J. Bishop |
Publisher | : Cambridge University Press |
Total Pages | : 415 |
Release | : 2017 |
Genre | : Mathematics |
ISBN | : 1107134110 |
A mathematically rigorous introduction to fractals, emphasizing examples and fundamental ideas while minimizing technicalities.
Author | : Robert A. Meyers |
Publisher | : Springer Science & Business Media |
Total Pages | : 1885 |
Release | : 2011-10-05 |
Genre | : Mathematics |
ISBN | : 1461418054 |
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Author | : Martin Gardner |
Publisher | : Cambridge University Press |
Total Pages | : 344 |
Release | : 1997-07-24 |
Genre | : Mathematics |
ISBN | : 9780883855218 |
Another superb collection of articles from Martin Gardner, the king of recreational mathematics.
Author | : Kenneth Falconer |
Publisher | : OUP Oxford |
Total Pages | : 153 |
Release | : 2013-09-26 |
Genre | : Mathematics |
ISBN | : 0191663441 |
Many are familiar with the beauty and ubiquity of fractal forms within nature. Unlike the study of smooth forms such as spheres, fractal geometry describes more familiar shapes and patterns, such as the complex contours of coastlines, the outlines of clouds, and the branching of trees. In this Very Short Introduction, Kenneth Falconer looks at the roots of the 'fractal revolution' that occurred in mathematics in the 20th century, presents the 'new geometry' of fractals, explains the basic concepts, and explores the wide range of applications in science, and in aspects of economics. This is essential introductory reading for students of mathematics and science, and those interested in popular science and mathematics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Author | : L. Pietronero |
Publisher | : Elsevier |
Total Pages | : 489 |
Release | : 2012-12-02 |
Genre | : Science |
ISBN | : 0444598413 |