Cubic Forms
Download Cubic Forms full books in PDF, epub, and Kindle. Read online free Cubic Forms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Tim Browning |
Publisher | : Springer Nature |
Total Pages | : 175 |
Release | : 2021-11-19 |
Genre | : Mathematics |
ISBN | : 3030868729 |
The Hardy–Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties. This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact with some of the many facets of the circle method, both classical and modern. This monograph is the winner of the 2021 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
Author | : I︠U︡ I. Manin |
Publisher | : |
Total Pages | : 308 |
Release | : 1974 |
Genre | : Mathematics |
ISBN | : |
Author | : Samuel A. Hambleton |
Publisher | : Springer |
Total Pages | : 493 |
Release | : 2018-11-19 |
Genre | : Mathematics |
ISBN | : 9783030014025 |
The objective of this book is to provide tools for solving problems which involve cubic number fields. Many such problems can be considered geometrically; both in terms of the geometry of numbers and geometry of the associated cubic Diophantine equations that are similar in many ways to the Pell equation. With over 50 geometric diagrams, this book includes illustrations of many of these topics. The book may be thought of as a companion reference for those students of algebraic number theory who wish to find more examples, a collection of recent research results on cubic fields, an easy-to-understand source for learning about Voronoi’s unit algorithm and several classical results which are still relevant to the field, and a book which helps bridge a gap in understanding connections between algebraic geometry and number theory. The exposition includes numerous discussions on calculating with cubic fields including simple continued fractions of cubic irrational numbers, arithmetic using integer matrices, ideal class group computations, lattices over cubic fields, construction of cubic fields with a given discriminant, the search for elements of norm 1 of a cubic field with rational parametrization, and Voronoi's algorithm for finding a system of fundamental units. Throughout, the discussions are framed in terms of a binary cubic form that may be used to describe a given cubic field. This unifies the chapters of this book despite the diversity of their number theoretic topics.
Author | : Alf J. van der Poorten |
Publisher | : Springer |
Total Pages | : 463 |
Release | : 2008-05-07 |
Genre | : Computers |
ISBN | : 3540794565 |
This book constitutes the refereed proceedings of the 8th International Algorithmic Number Theory Symposium, ANTS 2008, held in Banff, Canada, in May 2008. The 28 revised full papers presented together with 2 invited papers were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections on elliptic curves cryptology and generalizations, arithmetic of elliptic curves, integer factorization, K3 surfaces, number fields, point counting, arithmetic of function fields, modular forms, cryptography, and number theory.
Author | : Wai Kiu Chan |
Publisher | : American Mathematical Soc. |
Total Pages | : 259 |
Release | : 2013 |
Genre | : Mathematics |
ISBN | : 0821883186 |
This volume contains the proceedings of the International Workshop on Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms. The articles cover the arithmetic theory of quadratic forms and lattices, as well as the effective Diophantine analysis with height functions.
Author | : Melvyn B. Nathanson |
Publisher | : Springer Nature |
Total Pages | : 237 |
Release | : 2019-12-10 |
Genre | : Mathematics |
ISBN | : 3030311066 |
Based on talks from the 2017 and 2018 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 17 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, commutative algebra and discrete geometry, and applications of logic and nonstandard analysis to number theory. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.
Author | : C. G. Lekkerkerker |
Publisher | : Elsevier |
Total Pages | : 521 |
Release | : 2014-05-12 |
Genre | : Mathematics |
ISBN | : 1483259277 |
Bibliotheca Mathematica: A Series of Monographs on Pure and Applied Mathematics, Volume VIII: Geometry of Numbers focuses on bodies and lattices in the n-dimensional euclidean space. The text first discusses convex bodies and lattice points and the covering constant and inhomogeneous determinant of a set. Topics include the inhomogeneous determinant of a set, covering constant of a set, theorem of Minkowski-Hlawka, packing of convex bodies, successive minima and determinant of a set, successive minima of a convex body, extremal bodies, and polar reciprocal convex bodies. The publication ponders on star bodies, as well as points of critical lattices on the boundary, reducible, and irreducible star bodies and reduction of automorphic star bodies. The manuscript reviews homogeneous and inhomogeneous s forms and some methods. Discussions focus on asymmetric inequalities, inhomogeneous forms in more variables, indefinite binary quadratic forms, diophantine approximation, sums of powers of linear forms, spheres and quadratic forms, and a method of Blichfeldt and Mordell. The text is a dependable reference for researchers and mathematicians interested in bodies and lattices in the n-dimensional euclidean space.
Author | : Alfred Edwin Howard Tutton |
Publisher | : |
Total Pages | : 272 |
Release | : 1926 |
Genre | : Crystallography |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 332 |
Release | : 1923 |
Genre | : Science |
ISBN | : |
Author | : Leonard Eugene Dickson |
Publisher | : American Mathematical Soc. |
Total Pages | : 324 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 9780821819364 |
The last volume of Dickson's History is the most modern, covering quadratic and higher forms. The treatment here is more general than in Volume II, which, in a sense, is more concerned with special cases. Indeed, this volume chiefly presents methods of attacking whole classes of problems. Again, Dickson is exhaustive with references and citations.