Crossed Modules

Crossed Modules
Author: Friedrich Wagemann
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 342
Release: 2021-10-25
Genre: Mathematics
ISBN: 3110750996

This book presents material in two parts. Part one provides an introduction to crossed modules of groups, Lie algebras and associative algebras with fully written out proofs and is suitable for graduate students interested in homological algebra. In part two, more advanced and less standard topics such as crossed modules of Hopf algebra, Lie groups, and racks are discussed as well as recent developments and research on crossed modules.

Crossed Modules

Crossed Modules
Author: Friedrich Wagemann
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 410
Release: 2021-10-25
Genre: Mathematics
ISBN: 3110750953

This book presents material in two parts. Part one provides an introduction to crossed modules of groups, Lie algebras and associative algebras with fully written out proofs and is suitable for graduate students interested in homological algebra. In part two, more advanced and less standard topics such as crossed modules of Hopf algebra, Lie groups, and racks are discussed as well as recent developments and research on crossed modules.

Two-Dimensional Homotopy and Combinatorial Group Theory

Two-Dimensional Homotopy and Combinatorial Group Theory
Author: Cynthia Hog-Angeloni
Publisher: Cambridge University Press
Total Pages: 428
Release: 1993-12-09
Genre: Mathematics
ISBN: 0521447003

Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers.

Combinatorial Homotopy and 4-Dimensional Complexes

Combinatorial Homotopy and 4-Dimensional Complexes
Author: Hans-Joachim Baues
Publisher: Walter de Gruyter
Total Pages: 409
Release: 2011-05-12
Genre: Mathematics
ISBN: 3110854481

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)

An Introduction to Homological Algebra

An Introduction to Homological Algebra
Author: Charles A. Weibel
Publisher: Cambridge University Press
Total Pages: 470
Release: 1995-10-27
Genre: Mathematics
ISBN: 113964307X

The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.

Functions on Manifolds: Algebraic and Topological Aspects

Functions on Manifolds: Algebraic and Topological Aspects
Author: Vladimir Vasilʹevich Sharko
Publisher: American Mathematical Soc.
Total Pages: 210
Release: 1993
Genre: Mathematics
ISBN: 9780821845783

This monograph covers in a unified manner new results on smooth functions on manifolds. A major topic is Morse and Bott functions with a minimal number of singularities on manifolds of dimension greater than five. Sharko computes obstructions to deformation of one Morse function into another on a simply connected manifold. In addition, a method is developed for constructing minimal chain complexes and homotopical systems in the sense of Whitehead. This leads to conditions under which Morse functions on non-simply-connected manifolds exist. Sharko also describes new homotopical invariants of manifolds, which are used to substantially improve the Morse inequalities. The conditions guaranteeing the existence of minimal round Morse functions are discussed.

An Invitation to Computational Homotopy

An Invitation to Computational Homotopy
Author: Graham Ellis
Publisher: Oxford University Press
Total Pages: 640
Release: 2019-08-14
Genre: Mathematics
ISBN: 0192569414

An Invitation to Computational Homotopy is an introduction to elementary algebraic topology for those with an interest in computers and computer programming. It expertly illustrates how the basics of the subject can be implemented on a computer through its focus on fully-worked examples designed to develop problem solving techniques. The transition from basic theory to practical computation raises a range of non-trivial algorithmic issues which will appeal to readers already familiar with basic theory and who are interested in developing computational aspects. The book covers a subset of standard introductory material on fundamental groups, covering spaces, homology, cohomology and classifying spaces as well as some less standard material on crossed modules. These topics are covered in a way that hints at potential applications of topology in areas of computer science and engineering outside the usual territory of pure mathematics, and also in a way that demonstrates how computers can be used to perform explicit calculations within the domain of pure algebraic topology itself. The initial chapters include in-depth examples from data mining, biology and digital image analysis, while the later chapters cover a range of computational examples on the cohomology of classifying spaces that are likely beyond the reach of a purely paper-and-pen approach to the subject. An Invitation to Computational Homotopy serves as a self-contained and informal introduction to these topics and their implementation in the sphere of computer science. Written in a dynamic and engaging style, it skilfully showcases a range of useful machine computations, and will serve as an invaluable aid to graduate students working with algebraic topology.

Handbook of Algebra

Handbook of Algebra
Author: M. Hazewinkel
Publisher: Elsevier
Total Pages: 637
Release: 2009-07-08
Genre: Mathematics
ISBN: 0080932819

Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes

Towards Higher Categories

Towards Higher Categories
Author: John C. Baez
Publisher: Springer Science & Business Media
Total Pages: 292
Release: 2009-09-24
Genre: Algebra
ISBN: 1441915362

The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology and other tools of algebraic topology are seen through the eyes of n-category theory. The idea is to give some of the motivations behind this subject. There are then two survey articles, by Julie Bergner and Simona Paoli, about (infinity,1) categories and about the algebraic modelling of homotopy n-types. These are areas that are particularly well understood, and where a fully integrated theory exists. The main focus of the book is on the richness to be found in the theory of bicategories, which gives the essential starting point towards the understanding of higher categorical structures. An article by Stephen Lack gives a thorough, but informal, guide to this theory. A paper by Larry Breen on the theory of gerbes shows how such categorical structures appear in differential geometry. This book is dedicated to Max Kelly, the founder of the Australian school of category theory, and an historical paper by Ross Street describes its development.

Moonshine - The First Quarter Century and Beyond

Moonshine - The First Quarter Century and Beyond
Author: James Lepowsky
Publisher: Cambridge University Press
Total Pages: 415
Release: 2010-06-03
Genre: Mathematics
ISBN: 0521106648

This volume examines the impact of the 'Monstrous Moonshine' paper on mathematics and theoretical physics.