Cr Manifolds And The Tangential Cauchy Riemann Complex
Download Cr Manifolds And The Tangential Cauchy Riemann Complex full books in PDF, epub, and Kindle. Read online free Cr Manifolds And The Tangential Cauchy Riemann Complex ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Al Boggess |
Publisher | : Routledge |
Total Pages | : 386 |
Release | : 2017-09-20 |
Genre | : Mathematics |
ISBN | : 1351457578 |
CR Manifolds and the Tangential Cauchy Riemann Complex provides an elementary introduction to CR manifolds and the tangential Cauchy-Riemann Complex and presents some of the most important recent developments in the field. The first half of the book covers the basic definitions and background material concerning CR manifolds, CR functions, the tangential Cauchy-Riemann Complex and the Levi form. The second half of the book is devoted to two significant areas of current research. The first area is the holomorphic extension of CR functions. Both the analytic disc approach and the Fourier transform approach to this problem are presented. The second area of research is the integral kernal approach to the solvability of the tangential Cauchy-Riemann Complex. CR Manifolds and the Tangential Cauchy Riemann Complex will interest students and researchers in the field of several complex variable and partial differential equations.
Author | : Al Boggess |
Publisher | : Routledge |
Total Pages | : 383 |
Release | : 2017-09-20 |
Genre | : Mathematics |
ISBN | : 1351457586 |
CR Manifolds and the Tangential Cauchy Riemann Complex provides an elementary introduction to CR manifolds and the tangential Cauchy-Riemann Complex and presents some of the most important recent developments in the field. The first half of the book covers the basic definitions and background material concerning CR manifolds, CR functions, the tangential Cauchy-Riemann Complex and the Levi form. The second half of the book is devoted to two significant areas of current research. The first area is the holomorphic extension of CR functions. Both the analytic disc approach and the Fourier transform approach to this problem are presented. The second area of research is the integral kernal approach to the solvability of the tangential Cauchy-Riemann Complex. CR Manifolds and the Tangential Cauchy Riemann Complex will interest students and researchers in the field of several complex variable and partial differential equations.
Author | : Sorin Dragomir |
Publisher | : Springer Science & Business Media |
Total Pages | : 499 |
Release | : 2007-06-10 |
Genre | : Mathematics |
ISBN | : 0817644830 |
Presents many major differential geometric acheivements in the theory of CR manifolds for the first time in book form Explains how certain results from analysis are employed in CR geometry Many examples and explicitly worked-out proofs of main geometric results in the first section of the book making it suitable as a graduate main course or seminar textbook Provides unproved statements and comments inspiring further study
Author | : So-chin Chen |
Publisher | : American Mathematical Soc. |
Total Pages | : 396 |
Release | : 2001 |
Genre | : Mathematics |
ISBN | : 9780821829615 |
This book is intended as both an introductory text and a reference book for those interested in studying several complex variables in the context of partial differential equations. In the last few decades, significant progress has been made in the study of Cauchy-Riemann and tangential Cauchy-Riemann operators; this progress greatly influenced the development of PDEs and several complex variables. After the background material in complex analysis is developed in Chapters 1 to 3, thenext three chapters are devoted to the solvability and regularity of the Cauchy-Riemann equations using Hilbert space techniques. The authors provide a systematic study of the Cauchy-Riemann equations and the \bar\partial-Neumann problem, including Hórmander's L2 existence progress on the globalregularity and irregularity of the \bar\partial-Neumann operators. The second part of the book gives a comprehensive study of the tangential Cauchy-Riemann equations, another important class of equations in several complex variables first studied by Lewy. An up-to-date account of the L2 theory for \bar\partial b operator is given. Explicit integral solution representations are constructed both on the Heisenberg groups and on strictly convex boundaries with estimates in Hölder and L2spaces. Embeddability of abstract CR structures is discussed in detail here for the first time.Titles in this series are co-published with International Press, Cambridge, MA.
Author | : Sorin Dragomir |
Publisher | : Springer |
Total Pages | : 402 |
Release | : 2016-05-31 |
Genre | : Mathematics |
ISBN | : 9811009163 |
This book gathers contributions by respected experts on the theory of isometric immersions between Riemannian manifolds, and focuses on the geometry of CR structures on submanifolds in Hermitian manifolds. CR structures are a bundle theoretic recast of the tangential Cauchy–Riemann equations in complex analysis involving several complex variables. The book covers a wide range of topics such as Sasakian geometry, Kaehler and locally conformal Kaehler geometry, the tangential CR equations, Lorentzian geometry, holomorphic statistical manifolds, and paraquaternionic CR submanifolds. Intended as a tribute to Professor Aurel Bejancu, who discovered the notion of a CR submanifold of a Hermitian manifold in 1978, the book provides an up-to-date overview of several topics in the geometry of CR submanifolds. Presenting detailed information on the most recent advances in the area, it represents a useful resource for mathematicians and physicists alike.
Author | : Elisabetta Barletta |
Publisher | : American Mathematical Soc. |
Total Pages | : 270 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : 0821843044 |
The authors study the relationship between foliation theory and differential geometry and analysis on Cauchy-Riemann (CR) manifolds. The main objects of study are transversally and tangentially CR foliations, Levi foliations of CR manifolds, solutions of the Yang-Mills equations, tangentially Monge-Ampere foliations, the transverse Beltrami equations, and CR orbifolds. The novelty of the authors' approach consists in the overall use of the methods of foliation theory and choice of specific applications. Examples of such applications are Rea's holomorphic extension of Levi foliations, Stanton's holomorphic degeneracy, Boas and Straube's approximately commuting vector fields method for the study of global regularity of Neumann operators and Bergman projections in multi-dimensional complex analysis in several complex variables, as well as various applications to differential geometry. Many open problems proposed in the monograph may attract the mathematical community and lead to further applications of
Author | : J Noguchi |
Publisher | : World Scientific |
Total Pages | : 738 |
Release | : 1996-05-09 |
Genre | : |
ISBN | : 9814548596 |
This proceedings is a collection of articles in several complex variables with emphasis on geometric methods and results, which includes several survey papers reviewing the development of the topics in these decades. Through this volume one can see an active field providing insight into other fields like algebraic geometry, dynamical systems and partial differential equations.
Author | : Gen Komatsu |
Publisher | : Springer Science & Business Media |
Total Pages | : 322 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461221668 |
This volume consists of a collection of articles for the proceedings of the 40th Taniguchi Symposium Analysis and Geometry in Several Complex Variables held in Katata, Japan, on June 23-28, 1997. Since the inhomogeneous Cauchy-Riemann equation was introduced in the study of Complex Analysis of Several Variables, there has been strong interaction between Complex Analysis and Real Analysis, in particular, the theory of Partial Differential Equations. Problems in Complex Anal ysis stimulate the development of the PDE theory which subsequently can be applied to Complex Analysis. This interaction involves Differen tial Geometry, for instance, via the CR structure modeled on the induced structure on the boundary of a complex manifold. Such structures are naturally related to the PDE theory. Differential Geometric formalisms are efficiently used in settling problems in Complex Analysis and the results enrich the theory of Differential Geometry. This volume focuses on the most recent developments in this inter action, including links with other fields such as Algebraic Geometry and Theoretical Physics. Written by participants in the Symposium, this vol ume treats various aspects of CR geometry and the Bergman kernel/ pro jection, together with other major subjects in modern Complex Analysis. We hope that this volume will serve as a resource for all who are interested in the new trends in this area. We would like to express our gratitude to the Taniguchi Foundation for generous financial support and hospitality. We would also like to thank Professor Kiyosi Ito who coordinated the organization of the symposium.
Author | : Giuseppe Zampieri |
Publisher | : American Mathematical Soc. |
Total Pages | : 210 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 0821844423 |
Cauchy-Riemann (CR) geometry is the study of manifolds equipped with a system of CR-type equations. Compared to the early days when the purpose of CR geometry was to supply tools for the analysis of the existence and regularity of solutions to the $\bar\partial$-Neumann problem, it has rapidly acquired a life of its own and has became an important topic in differential geometry and the study of non-linear partial differential equations. A full understanding of modern CR geometryrequires knowledge of various topics such as real/complex differential and symplectic geometry, foliation theory, the geometric theory of PDE's, and microlocal analysis. Nowadays, the subject of CR geometry is very rich in results, and the amount of material required to reach competence is daunting tograduate students who wish to learn it.
Author | : M. Salah Baouendi |
Publisher | : Princeton University Press |
Total Pages | : 418 |
Release | : 2016-06-02 |
Genre | : Mathematics |
ISBN | : 1400883962 |
This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differential equations, as well as from differential, algebraic, and analytical geometry. In turn, these latter areas have been enriched over the years by the study of problems in several complex variables addressed here. The authors, M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, include extensive preliminary material to make the book accessible to nonspecialists. One of the most important topics that the authors address here is the holomorphic extension of functions and mappings that satisfy the tangential Cauchy-Riemann equations on real submanifolds. They present the main results in this area with a novel and self-contained approach. The book also devotes considerable attention to the study of holomorphic mappings between real submanifolds, and proves finite determination of such mappings by their jets under some optimal assumptions. The authors also give a thorough comparison of the various nondegeneracy conditions for manifolds and mappings and present new geometric interpretations of these conditions. Throughout the book, Cauchy-Riemann vector fields and their orbits play a central role and are presented in a setting that is both general and elementary.