Connectionist Modeling and Brain Function

Connectionist Modeling and Brain Function
Author: Stephen José Hanson
Publisher: Bradford Book
Total Pages: 448
Release: 1990
Genre: Computers
ISBN:

Bringing together contributions in biology, neuroscience, computer science, physics, and psychology, this book offers a solid tutorial on current research activity in connectionist-inspired biology-based modeling. It describes specific experimental approaches and also confronts general issues related to learning associative memory, and sensorimotor development. Introductory chapters by editors Hanson and Olson, along with Terrence Sejnowski, Christof Koch, and Patricia S. Churchland, provide an overview of computational neuroscience, establish the distinction between "realistic" brain models and "simplified" brain models, provide specific examples of each, and explain why each approach might be appropriate in a given context. The remaining chapters are organized so that material on the anatomy and physiology of a specific part of the brain precedes the presentation of modeling studies. The modeling itself ranges from simplified models to more realistic models and provides examples of constraints arising from known brain detail as well as choices modelers face when including or excluding such constraints. There are three sections, each focused on a key area where biology and models have converged. Stephen Jose Hanson is Member of Technical Staff, Bellcore, and Visiting Faculty, Cognitive Science Laboratory, Princeton University. Carl R. Olson is Assistant Professor, Department of Psychology at Princeton Connectionist Modeling and Brain Functionis included in the Network Modeling and Connectionism series, edited by Jeffrey Elman.

Modeling Brain Function

Modeling Brain Function
Author: D. J. Amit
Publisher: Cambridge University Press
Total Pages: 528
Release: 1989
Genre: Computers
ISBN: 9780521421249

One of the most exciting and potentially rewarding areas of scientific research is the study of the principles and mechanisms underlying brain function. It is also of great promise to future generations of computers. A growing group of researchers, adapting knowledge and techniques from a wide range of scientific disciplines, have made substantial progress understanding memory, the learning process, and self organization by studying the properties of models of neural networks - idealized systems containing very large numbers of connected neurons, whose interactions give rise to the special qualities of the brain. This book introduces and explains the techniques brought from physics to the study of neural networks and the insights they have stimulated. It is written at a level accessible to the wide range of researchers working on these problems - statistical physicists, biologists, computer scientists, computer technologists and cognitive psychologists. The author presents a coherent and clear nonmechanical presentation of all the basic ideas and results. More technical aspects are restricted, wherever possible, to special sections and appendices in each chapter. The book is suitable as a text for graduate courses in physics, electrical engineering, computer science and biology.

Connectionist Modelling in Cognitive Neuropsychology

Connectionist Modelling in Cognitive Neuropsychology
Author: David C. Plaut
Publisher: Psychology Press
Total Pages: 172
Release: 1994
Genre: Medical
ISBN: 9780863773365

This title presents the most comprehensive existing "case study" of how the effects of damage in connectionist models can replicate the patterns of cognitive impairments that can arise in humans as a result of brain damage.

Introduction to Connectionist Modelling of Cognitive Processes

Introduction to Connectionist Modelling of Cognitive Processes
Author: Peter McLeod
Publisher: Oxford University Press, USA
Total Pages: 388
Release: 1998-01-01
Genre: Science
ISBN: 9780198524274

Describes the principles of connectionist modelling, and its application in understanding how the brain produces speech, forms memories, recognizes faces, and how intellect develops and deteriorates after brain damage.

The Handbook of Brain Theory and Neural Networks

The Handbook of Brain Theory and Neural Networks
Author: Michael A. Arbib
Publisher: MIT Press
Total Pages: 1328
Release: 2003
Genre: Neural circuitry
ISBN: 0262011972

This second edition presents the enormous progress made in recent years in the many subfields related to the two great questions : how does the brain work? and, How can we build intelligent machines? This second edition greatly increases the coverage of models of fundamental neurobiology, cognitive neuroscience, and neural network approaches to language. (Midwest).

Connectionism and the Mind

Connectionism and the Mind
Author: William Bechtel
Publisher: Wiley-Blackwell
Total Pages: 424
Release: 2002-01-21
Genre: Philosophy
ISBN: 9780631207139

Connectionism and the Mind provides a clear and balanced introduction to connectionist networks and explores theoretical and philosophical implications. Much of this discussion from the first edition has been updated, and three new chapters have been added on the relation of connectionism to recent work on dynamical systems theory, artificial life, and cognitive neuroscience. Read two of the sample chapters on line: Connectionism and the Dynamical Approach to Cognition: http://www.blackwellpublishing.com/pdf/bechtel.pdf Networks, Robots, and Artificial Life: http://www.blackwellpublishing.com/pdf/bechtel2.pdf

Connectionist Models

Connectionist Models
Author: David S. Touretzky
Publisher: Morgan Kaufmann
Total Pages: 417
Release: 2014-05-12
Genre: Psychology
ISBN: 1483214486

Connectionist Models contains the proceedings of the 1990 Connectionist Models Summer School held at the University of California at San Diego. The summer school provided a forum for students and faculty to assess the state of the art with regards to connectionist modeling. Topics covered range from theoretical analysis of networks to empirical investigations of learning algorithms; speech and image processing; cognitive psychology; computational neuroscience; and VLSI design. Comprised of 40 chapters, this book begins with an introduction to mean field, Boltzmann, and Hopfield networks, focusing on deterministic Boltzmann learning in networks with asymmetric connectivity; contrastive Hebbian learning in the continuous Hopfield model; and energy minimization and the satisfiability of propositional logic. Mean field networks that learn to discriminate temporally distorted strings are described. The next sections are devoted to reinforcement learning and genetic learning, along with temporal processing and modularity. Cognitive modeling and symbol processing as well as VLSI implementation are also discussed. This monograph will be of interest to both students and academicians concerned with connectionist modeling.

Representation in the Brain

Representation in the Brain
Author: Asim Roy
Publisher: Frontiers Media SA
Total Pages: 147
Release: 2018-09-28
Genre:
ISBN: 2889455963

This eBook contains ten articles on the topic of representation of abstract concepts, both simple and complex, at the neural level in the brain. Seven of the articles directly address the main competing theories of mental representation – localist and distributed. Four of these articles argue – either on a theoretical basis or with neurophysiological evidence – that abstract concepts, simple or complex, exist (have to exist) at either the single cell level or in an exclusive neural cell assembly. There are three other papers that argue for sparse distributed representation (population coding) of abstract concepts. There are two other papers that discuss neural implementation of symbolic models. The remaining paper deals with learning of motor skills from imagery versus actual execution. A summary of these papers is provided in the Editorial.

Connectionism and the Philosophy of Mind

Connectionism and the Philosophy of Mind
Author: T. Horgan
Publisher: Springer Science & Business Media
Total Pages: 484
Release: 2012-12-06
Genre: Computers
ISBN: 940113524X

This series will include monographs and collections of studies devoted to the investigation and exploration of knowledge, information and data processing systems of all kinds, no matter whether human, (other) animal, or machine. Its scope is intended to span the full range of interests from classical problems in the philosophy of mind and philosophical psychology through issues in cognitive psychology and sociobiology (concerning the mental capabilities of other species) to ideas related to artificial intelligence and to computer science. While primary emphasis will be placed upon theoretical, conceptual and epistemological aspects of these problems and domains, empirical, experimental and methodological studies will also appear from time to time. One of the most, if not the most, exciting developments within cognitive science has been the emergence of connectionism as an alternative to the computational conception of the mind that tends to dominate the discipline. In this volume, John Tienson and Terence Horgan have brought together a fine collection of stimulating studies on connectionism and its significance. As the Introduction explains, the most pressing questions concern whether or not connectionism can provide a new conception of the nature of mentality. By focusing on the similarities and differences between connectionism and other approaches to cognitive science, the chapters of this book supply valuable resources that advance our understanding of these difficult issues. J.H.F.