Confoliations

Confoliations
Author: Y. Eliashberg
Publisher: American Mathematical Soc.
Total Pages: 82
Release: 1998
Genre: Mathematics
ISBN: 0821807765

This book presents the first steps of a theory of confoliations designed to link geometry and topology of three-dimensional contact structures with the geometry and topology of codimension-one foliations on three-dimensional manifolds. Developing almost independently, these theories at first glance belonged to two different worlds: The theory of foliations is part of topology and dynamical systems, while contact geometry is the odd-dimensional "brother" of symplectic geometry. However, both theories have developed a number of striking similarities. Confoliations--which interpolate between contact structures and codimension-one foliations--should help us to understand better links between the two theories. These links provide tools for transporting results from one field to the other.

Collected Works of William P. Thurston with Commentary

Collected Works of William P. Thurston with Commentary
Author: Benson Farb
Publisher: American Mathematical Society
Total Pages: 784
Release: 2023-06-05
Genre: Mathematics
ISBN: 1470474727

William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume I contains William Thurston's papers on foliations, mapping classes groups, and differential geometry.

Foliations: Geometry And Dynamics - Proceedings Of The Euroworkshop

Foliations: Geometry And Dynamics - Proceedings Of The Euroworkshop
Author: Lawrence Conlon
Publisher: World Scientific
Total Pages: 462
Release: 2002-02-01
Genre:
ISBN: 9814489700

This volume contains surveys and research articles regarding different aspects of the theory of foliation. The main aspects concern the topology of foliations of low-dimensional manifolds, the geometry of foliated Riemannian manifolds and the dynamical properties of foliations. Among the surveys are lecture notes devoted to the analysis of some operator algebras on foliated manifolds and the theory of confoliations (objects defined recently by W Thurston and Y Eliashberg, situated between foliations and contact structures). Among the research articles one can find a detailed proof of an unpublished theorem (due to Duminy) concerning ends of leaves in exceptional minimal sets.

European Congress of Mathematics

European Congress of Mathematics
Author: Carles Casacuberta
Publisher: Birkhäuser
Total Pages: 630
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034882661

This is the second volume of the proceedings of the third European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners as well as papers by plenary and parallel speakers. The second volume collects articles by prize winners and speakers of the mini-symposia. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician.

Heisenberg Calculus and Spectral Theory of Hypoelliptic Operators on Heisenberg Manifolds

Heisenberg Calculus and Spectral Theory of Hypoelliptic Operators on Heisenberg Manifolds
Author: Raphael Ponge
Publisher: American Mathematical Soc.
Total Pages: 150
Release: 2008
Genre: Mathematics
ISBN: 0821841483

This memoir deals with the hypoelliptic calculus on Heisenberg manifolds, including CR and contact manifolds. In this context the main differential operators at stake include the Hormander's sum of squares, the Kohn Laplacian, the horizontal sublaplacian, the CR conformal operators of Gover-Graham and the contact Laplacian. These operators cannot be elliptic and the relevant pseudodifferential calculus to study them is provided by the Heisenberg calculus of Beals-Greiner andTaylor.

Contact and Symplectic Geometry

Contact and Symplectic Geometry
Author: Charles Benedict Thomas
Publisher: Cambridge University Press
Total Pages: 332
Release: 1996-09-28
Genre: Mathematics
ISBN: 9780521570862

This volume presents some of the lectures and research during the special programme held at the Newton Institute in 1994. The two parts each contain a mix of substantial expository articles and research papers that outline important and topical ideas. Many of the results have not been presented before, and the lectures on Floer homology is the first avaliable in book form.Symplectic methods are one of the most active areas of research in mathematics currently, and this volume will attract much attention.

Low Dimensional Topology

Low Dimensional Topology
Author: Tomasz Mrowka
Publisher: American Mathematical Soc.
Total Pages: 331
Release: 2009-01-01
Genre: Mathematics
ISBN: 0821886967

Low-dimensional topology has long been a fertile area for the interaction of many different disciplines of mathematics, including differential geometry, hyperbolic geometry, combinatorics, representation theory, global analysis, classical mechanics, and theoretical physics. The Park City Mathematics Institute summer school in 2006 explored in depth the most exciting recent aspects of this interaction, aimed at a broad audience of both graduate students and researchers. The present volume is based on lectures presented at the summer school on low-dimensional topology. These notes give fresh, concise, and high-level introductions to these developments, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field of low-dimensional topology and to senior researchers wishing to keep up with current developments. The volume begins with notes based on a special lecture by John Milnor about the history of the topology of manifolds. It also contains notes from lectures by Cameron Gordon on the basics of three-manifold topology and surgery problems, Mikhail Khovanov on his homological invariants for knots, John Etnyre on contact geometry, Ron Fintushel and Ron Stern on constructions of exotic four-manifolds, David Gabai on the hyperbolic geometry and the ending lamination theorem, Zoltan Szabo on Heegaard Floer homology for knots and three manifolds, and John Morgan on Hamilton's and Perelman's work on Ricci flow and geometrization.