Concepts Of Proof In Mathematics Philosophy And Computer Science
Download Concepts Of Proof In Mathematics Philosophy And Computer Science full books in PDF, epub, and Kindle. Read online free Concepts Of Proof In Mathematics Philosophy And Computer Science ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Dieter Probst |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 392 |
Release | : 2016-07-25 |
Genre | : Philosophy |
ISBN | : 1501502646 |
A proof is a successful demonstration that a conclusion necessarily follows by logical reasoning from axioms which are considered evident for the given context and agreed upon by the community. It is this concept that sets mathematics apart from other disciplines and distinguishes it as the prototype of a deductive science. Proofs thus are utterly relevant for research, teaching and communication in mathematics and of particular interest for the philosophy of mathematics. In computer science, moreover, proofs have proved to be a rich source for already certified algorithms. This book provides the reader with a collection of articles covering relevant current research topics circled around the concept 'proof'. It tries to give due consideration to the depth and breadth of the subject by discussing its philosophical and methodological aspects, addressing foundational issues induced by Hilbert's Programme and the benefits of the arising formal notions of proof, without neglecting reasoning in natural language proofs and applications in computer science such as program extraction.
Author | : Dieter Probst |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 384 |
Release | : 2016-07-25 |
Genre | : Philosophy |
ISBN | : 150150262X |
A proof is a successful demonstration that a conclusion necessarily follows by logical reasoning from axioms which are considered evident for the given context and agreed upon by the community. It is this concept that sets mathematics apart from other disciplines and distinguishes it as the prototype of a deductive science. Proofs thus are utterly relevant for research, teaching and communication in mathematics and of particular interest for the philosophy of mathematics. In computer science, moreover, proofs have proved to be a rich source for already certified algorithms. This book provides the reader with a collection of articles covering relevant current research topics circled around the concept 'proof'. It tries to give due consideration to the depth and breadth of the subject by discussing its philosophical and methodological aspects, addressing foundational issues induced by Hilbert's Programme and the benefits of the arising formal notions of proof, without neglecting reasoning in natural language proofs and applications in computer science such as program extraction.
Author | : Donald W. Loveland |
Publisher | : Princeton University Press |
Total Pages | : 339 |
Release | : 2014-01-26 |
Genre | : Mathematics |
ISBN | : 140084875X |
The first interdisciplinary textbook to introduce students to three critical areas in applied logic Demonstrating the different roles that logic plays in the disciplines of computer science, mathematics, and philosophy, this concise undergraduate textbook covers select topics from three different areas of logic: proof theory, computability theory, and nonclassical logic. The book balances accessibility, breadth, and rigor, and is designed so that its materials will fit into a single semester. Its distinctive presentation of traditional logic material will enhance readers' capabilities and mathematical maturity. The proof theory portion presents classical propositional logic and first-order logic using a computer-oriented (resolution) formal system. Linear resolution and its connection to the programming language Prolog are also treated. The computability component offers a machine model and mathematical model for computation, proves the equivalence of the two approaches, and includes famous decision problems unsolvable by an algorithm. The section on nonclassical logic discusses the shortcomings of classical logic in its treatment of implication and an alternate approach that improves upon it: Anderson and Belnap's relevance logic. Applications are included in each section. The material on a four-valued semantics for relevance logic is presented in textbook form for the first time. Aimed at upper-level undergraduates of moderate analytical background, Three Views of Logic will be useful in a variety of classroom settings. Gives an exceptionally broad view of logic Treats traditional logic in a modern format Presents relevance logic with applications Provides an ideal text for a variety of one-semester upper-level undergraduate courses
Author | : Gilles Dowek |
Publisher | : Springer Science & Business Media |
Total Pages | : 161 |
Release | : 2011-01-11 |
Genre | : Computers |
ISBN | : 0857291211 |
Logic is a branch of philosophy, mathematics and computer science. It studies the required methods to determine whether a statement is true, such as reasoning and computation. Proofs and Algorithms: Introduction to Logic and Computability is an introduction to the fundamental concepts of contemporary logic - those of a proof, a computable function, a model and a set. It presents a series of results, both positive and negative, - Church's undecidability theorem, Gödel’s incompleteness theorem, the theorem asserting the semi-decidability of provability - that have profoundly changed our vision of reasoning, computation, and finally truth itself. Designed for undergraduate students, this book presents all that philosophers, mathematicians and computer scientists should know about logic.
Author | : Eric Lehman |
Publisher | : |
Total Pages | : 988 |
Release | : 2017-03-08 |
Genre | : Business & Economics |
ISBN | : 9789888407064 |
This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.
Author | : Jeremy Avigad |
Publisher | : Cambridge University Press |
Total Pages | : 527 |
Release | : 2022-09-30 |
Genre | : Computers |
ISBN | : 1108478751 |
A thorough introduction to the fundamental methods and results in mathematical logic, and its foundational role in computer science.
Author | : David C. Kurtz |
Publisher | : McGraw-Hill Companies |
Total Pages | : 216 |
Release | : 1992 |
Genre | : Mathematics |
ISBN | : |
This text is designed for the average to strong mathematics major taking a course called Transition to Higher Mathematics, Introduction to Proofs, or Fundamentals of Mathematics. It provides a transition to topics covered in advanced mathematics and covers logic, proofs and sets and emphasizes two important mathematical activities - finding examples of objects with specified properties and writing proofs.
Author | : Thomas Piecha |
Publisher | : Springer |
Total Pages | : 281 |
Release | : 2015-10-24 |
Genre | : Philosophy |
ISBN | : 331922686X |
This volume is the first ever collection devoted to the field of proof-theoretic semantics. Contributions address topics including the systematics of introduction and elimination rules and proofs of normalization, the categorial characterization of deductions, the relation between Heyting's and Gentzen's approaches to meaning, knowability paradoxes, proof-theoretic foundations of set theory, Dummett's justification of logical laws, Kreisel's theory of constructions, paradoxical reasoning, and the defence of model theory. The field of proof-theoretic semantics has existed for almost 50 years, but the term itself was proposed by Schroeder-Heister in the 1980s. Proof-theoretic semantics explains the meaning of linguistic expressions in general and of logical constants in particular in terms of the notion of proof. This volume emerges from presentations at the Second International Conference on Proof-Theoretic Semantics in Tübingen in 2013, where contributing authors were asked to provide a self-contained description and analysis of a significant research question in this area. The contributions are representative of the field and should be of interest to logicians, philosophers, and mathematicians alike.
Author | : Klaus Mainzer |
Publisher | : World Scientific |
Total Pages | : 300 |
Release | : 2018-05-30 |
Genre | : Mathematics |
ISBN | : 9813270950 |
This book is for graduate students and researchers, introducing modern foundational research in mathematics, computer science, and philosophy from an interdisciplinary point of view. Its scope includes Predicative Foundations, Constructive Mathematics and Type Theory, Computation in Higher Types, Extraction of Programs from Proofs, and Algorithmic Aspects in Financial Mathematics. By filling the gap between (under-)graduate level textbooks and advanced research papers, the book gives a scholarly account of recent developments and emerging branches of the aforementioned fields.
Author | : Joel David Hamkins |
Publisher | : MIT Press |
Total Pages | : 350 |
Release | : 2021-03-09 |
Genre | : Mathematics |
ISBN | : 0262542234 |
An introduction to the philosophy of mathematics grounded in mathematics and motivated by mathematical inquiry and practice. In this book, Joel David Hamkins offers an introduction to the philosophy of mathematics that is grounded in mathematics and motivated by mathematical inquiry and practice. He treats philosophical issues as they arise organically in mathematics, discussing such topics as platonism, realism, logicism, structuralism, formalism, infinity, and intuitionism in mathematical contexts. He organizes the book by mathematical themes--numbers, rigor, geometry, proof, computability, incompleteness, and set theory--that give rise again and again to philosophical considerations.