Concepts from Tensor Analysis and Differential Geometry by Tracy Y Thomas

Concepts from Tensor Analysis and Differential Geometry by Tracy Y Thomas
Author:
Publisher: Elsevier
Total Pages: 129
Release: 2000-04-01
Genre: Technology & Engineering
ISBN: 0080957781

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering

Concepts from Tensor Analysis and Differential Geometry

Concepts from Tensor Analysis and Differential Geometry
Author: Tracy Y. Thomas
Publisher: Elsevier
Total Pages: 128
Release: 2016-06-03
Genre: Mathematics
ISBN: 1483263711

Concepts from Tensor Analysis and Differential Geometry discusses coordinate manifolds, scalars, vectors, and tensors. The book explains some interesting formal properties of a skew-symmetric tensor and the curl of a vector in a coordinate manifold of three dimensions. It also explains Riemann spaces, affinely connected spaces, normal coordinates, and the general theory of extension. The book explores differential invariants, transformation groups, Euclidean metric space, and the Frenet formulae. The text describes curves in space, surfaces in space, mixed surfaces, space tensors, including the formulae of Gaus and Weingarten. It presents the equations of two scalars K and Q which can be defined over a regular surface S in a three dimensional Riemannian space R. In the equation, the scalar K, which is an intrinsic differential invariant of the surface S, is known as the total or Gaussian curvature and the scalar U is the mean curvature of the surface. The book also tackles families of parallel surfaces, developable surfaces, asymptotic lines, and orthogonal ennuples. The text is intended for a one-semester course for graduate students of pure mathematics, of applied mathematics covering subjects such as the theory of relativity, fluid mechanics, elasticity, and plasticity theory.

Plastic Flow and Fracture in Solids by Tracy Y Thomas

Plastic Flow and Fracture in Solids by Tracy Y Thomas
Author:
Publisher: Elsevier
Total Pages: 279
Release: 1961-01-01
Genre: Technology & Engineering
ISBN: 0080955118

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering

Differential Geometry and the Calculus of Variations by Robert Hermann

Differential Geometry and the Calculus of Variations by Robert Hermann
Author:
Publisher: Elsevier
Total Pages: 455
Release: 2000-04-01
Genre: Mathematics
ISBN: 0080955576

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering

Introduction to Vector and Tensor Analysis

Introduction to Vector and Tensor Analysis
Author: Robert C. Wrede
Publisher: Courier Corporation
Total Pages: 436
Release: 2013-01-30
Genre: Mathematics
ISBN: 0486137112

Examines general Cartesian coordinates, the cross product, Einstein's special theory of relativity, bases in general coordinate systems, maxima and minima of functions of two variables, line integrals, integral theorems, and more. 1963 edition.

Tensor Calculus for Engineers and Physicists

Tensor Calculus for Engineers and Physicists
Author: Emil de Souza Sánchez Filho
Publisher: Springer
Total Pages: 370
Release: 2016-05-20
Genre: Technology & Engineering
ISBN: 331931520X

This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of n-dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without needing to resort to other bibliographical sources on tensors. Chapter 1 deals with Fundamental Concepts about tensors and chapter 2 is devoted to the study of covariant, absolute and contravariant derivatives. The chapters 3 and 4 are dedicated to the Integral Theorems and Differential Operators, respectively. Chapter 5 deals with Riemann Spaces, and finally the chapter 6 presents a concise study of the Parallelism of Vectors. It also shows how to solve various problems of several particular manifolds.

Differential and Integral Inequalities: Theory and Applications

Differential and Integral Inequalities: Theory and Applications
Author: V. Lakshmikantham
Publisher: Academic Press
Total Pages: 405
Release: 1969
Genre: Computers
ISBN: 0080955630

This volume constitutes the first part of a monograph on theory and applications of differential and integral inequalities. 'The entire work, as a whole, is intended to be a research monograph, a guide to the literature, and a textbook for advanced courses. The unifying theme of this treatment is a systematic development of the theory and applicationsof differential inequalities as well as Volterra integral inequalities. The main tools for applications are the norm and the Lyapunov functions. Familiarity with real and complex analysis, elements of general topology and functional analysis, and differential and integral equations is assumed.

Comparison and Oscillation Theory of Linear Differential Equations

Comparison and Oscillation Theory of Linear Differential Equations
Author: C. A. Swanson
Publisher: Elsevier
Total Pages: 238
Release: 2016-06-03
Genre: Mathematics
ISBN: 1483266672

Mathematics in Science and Engineering, Volume 48: Comparison and Oscillation Theory of Linear Differential Equations deals primarily with the zeros of solutions of linear differential equations. This volume contains five chapters. Chapter 1 focuses on comparison theorems for second order equations, while Chapter 2 treats oscillation and nonoscillation theorems for second order equations. Separation, comparison, and oscillation theorems for fourth order equations are covered in Chapter 3. In Chapter 4, ordinary equations and systems of differential equations are reviewed. The last chapter discusses the result of the first analog of a Sturm-type comparison theorem for an elliptic partial differential equation. This publication is intended for college seniors or beginning graduate students who are well-acquainted with advanced calculus, complex analysis, linear algebra, and linear differential equations.