Computing Equilibria and Fixed Points

Computing Equilibria and Fixed Points
Author: Zaifu Yang
Publisher: Springer Science & Business Media
Total Pages: 349
Release: 2013-04-17
Genre: Business & Economics
ISBN: 1475748396

Computing Equilibria and Fixed Points is devoted to the computation of equilibria, fixed points and stationary points. This volume is written with three goals in mind: (i) To give a comprehensive introduction to fixed point methods and to the definition and construction of Gröbner bases; (ii) To discuss several interesting applications of these methods in the fields of general equilibrium theory, game theory, mathematical programming, algebra and symbolic computation; (iii) To introduce several advanced fixed point and stationary point theorems. These methods and topics should be of interest not only to economists and game theorists concerned with the computation and existence of equilibrium outcomes in economic models and cooperative and non-cooperative games, but also to applied mathematicians, computer scientists and engineers dealing with models of highly nonlinear systems of equations (or polynomial equations).

Analysis and Computation of Fixed Points

Analysis and Computation of Fixed Points
Author: Stephen M. Robinson
Publisher: Academic Press
Total Pages: 424
Release: 2014-05-10
Genre: Mathematics
ISBN: 1483266028

Analysis and Computation of Fixed Points contains the proceedings of a Symposium on Analysis and Computation of Fixed Points, held at the University of Wisconsin-Madison on May 7-8, 1979. The papers focus on the analysis and computation of fixed points and cover topics ranging from paths generated by fixed point algorithms to strongly stable stationary solutions in nonlinear programs. A simple reliable numerical algorithm for following homotopy paths is also presented. Comprised of nine chapters, this book begins by describing the techniques of numerical linear algebra that possess attractive stability properties and exploit sparsity, and their application to the linear systems that arise in algorithms that solve equations by constructing piecewise-linear homotopies. The reader is then introduced to two triangulations for homotopy fixed point algorithms with an arbitrary grid refinement, followed by a discussion on some generic properties of paths generated by fixed point algorithms. Subsequent chapters deal with topological perturbations in the numerical study of nonlinear eigenvalue and bifurcation problems; general equilibrium analysis of taxation policy; and solving urban general equilibrium models by fixed point methods. The book concludes with an evaluation of economic equilibrium under deformation of the economy. This monograph should be of interest to students and specialists in the field of mathematics.

Advanced Fixed Point Theory for Economics

Advanced Fixed Point Theory for Economics
Author: Andrew McLennan
Publisher: Springer
Total Pages: 441
Release: 2018-07-03
Genre: Business & Economics
ISBN: 9811307105

This book develops the central aspect of fixed point theory – the topological fixed point index – to maximal generality, emphasizing correspondences and other aspects of the theory that are of special interest to economics. Numerous topological consequences are presented, along with important implications for dynamical systems. The book assumes the reader has no mathematical knowledge beyond that which is familiar to all theoretical economists. In addition to making the material available to a broad audience, avoiding algebraic topology results in more geometric and intuitive proofs. Graduate students and researchers in economics, and related fields in mathematics and computer science, will benefit from this book, both as a useful reference and as a well-written rigorous exposition of foundational mathematics. Numerous problems sketch key results from a wide variety of topics in theoretical economics, making the book an outstanding text for advanced graduate courses in economics and related disciplines.

Discrete and System Models

Discrete and System Models
Author: W.F. Lucas
Publisher: Springer
Total Pages: 372
Release: 2013-12-19
Genre: Mathematics
ISBN: 1461254434

The purpose of this four volume series is to make available for college teachers and students samples of important and realistic applications of mathematics which can be covered in undergraduate programs. The goal is to provide illustrations of how modem mathematics is actually employed to solve relevant contemporary problems. Although these independent chapters were prepared primarily for teachers in the general mathematical sciences, they should prove valuable to students, teachers, and research scientists in many of the fields of application as well. Prerequisites for each chapter and suggestions for the teacher are provided. Several of these chapters have been tested in a variety of classroom settings, and all have undergone extensive peer review and revision. Illustrations and exercises be covered in one class, are included in most chapters. Some units can whereas others provide sufficient material for a few weeks of class time. Volume 1 contains 23 chapters and deals with differential equations and, in the last four chapters, problems leading to partial differential equations. Applications are taken from medicine, biology, traffic systems and several other fields. The 14 chapters in Volume 2 are devoted mostly to problems arising in political science, but they also address questions appearing in sociology and ecology. Topics covered include voting systems, weighted voting, proportional representation, coalitional values, and committees. The 14 chapters in Volume 3 emphasize discrete mathematical methods such as those which arise in graph theory, combinatorics, and networks.

Introduction to Numerical Continuation Methods

Introduction to Numerical Continuation Methods
Author: Eugene L. Allgower
Publisher: SIAM
Total Pages: 413
Release: 2003-01-01
Genre: Mathematics
ISBN: 9780898719154

Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. The book also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals. To help potential users of numerical continuation methods create programs adapted to their particular needs, this book presents pseudo-codes and Fortran codes as illustrations. Since it first appeared, many specialized packages for treating such varied problems as bifurcation, polynomial systems, eigenvalues, economic equilibria, optimization, and the approximation of manifolds have been written. The original extensive bibliography has been updated in the SIAM Classics edition to include more recent references and several URLs so users can look for codes to suit their needs. Audience: this book continues to be useful for researchers and graduate students in mathematics, sciences, engineering, economics, and business. A background in elementary analysis and linear algebra are adequate prerequisites for reading this book; some knowledge from a first course in numerical analysis may also be helpful.

Mathematical Programming The State of the Art

Mathematical Programming The State of the Art
Author: A. Bachem
Publisher: Springer Science & Business Media
Total Pages: 662
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642688748

In the late forties, Mathematical Programming became a scientific discipline in its own right. Since then it has experienced a tremendous growth. Beginning with economic and military applications, it is now among the most important fields of applied mathematics with extensive use in engineering, natural sciences, economics, and biological sciences. The lively activity in this area is demonstrated by the fact that as early as 1949 the first "Symposium on Mathe matical Programming" took place in Chicago. Since then mathematical programmers from all over the world have gath ered at the intfrnational symposia of the Mathematical Programming Society roughly every three years to present their recent research, to exchange ideas with their colleagues and to learn about the latest developments in their own and related fields. In 1982, the XI. International Symposium on Mathematical Programming was held at the University of Bonn, W. Germany, from August 23 to 27. It was organized by the Institut fUr Okonometrie und Operations Re search of the University of Bonn in collaboration with the Sonderforschungs bereich 21 of the Deutsche Forschungsgemeinschaft. This volume constitutes part of the outgrowth of this symposium and docu ments its scientific activities. Part I of the book contains information about the symposium, welcoming addresses, lists of committees and sponsors and a brief review about the Ful kerson Prize and the Dantzig Prize which were awarded during the opening ceremony.

Fixed Points

Fixed Points
Author: Stepan Karamardian
Publisher: Academic Press
Total Pages: 505
Release: 2014-05-10
Genre: Mathematics
ISBN: 1483261131

Fixed Points: Algorithms and Applications covers the proceedings of the First International Conference on Computing Fixed Points with Applications, held in the Department of Mathematical Sciences at Clemson University, Clemson, South Carolina on June 26-28, 1974. This book is composed of 21 chapters and starts with reviews of finding roots of polynomials by pivoting procedures and the relations between convergence and labeling in approximation algorithm. The next chapters deal with the principles of complementary pivot theory and the Markovian decision chains; the method of continuation for Brouwer fixed point calculation; a fixed point approach to stability in cooperative games; and computation of fixed points in a nonconvex region. Other chapters discuss a computational comparison of fixed point algorithms, the fundamentals of union jack triangulations, and some aspects of Mann's iterative method for approximating fixed points. The final chapters consider the application of fixed point algorithms to the analysis of tax policies and the pricing for congestion in telephone networks. This book will prove useful to mathematicians, computer scientists, and advance mathematics students.