Multi-Dimensional Analysis

Multi-Dimensional Analysis
Author: Tony Berber Sardinha
Publisher: Bloomsbury Publishing
Total Pages: 279
Release: 2019-03-21
Genre: Language Arts & Disciplines
ISBN: 1350023841

Multi-Dimensional Analysis: Research Methods and Current Issues provides a comprehensive guide both to the statistical methods in Multi-Dimensional Analysis (MDA) and its key elements, such as corpus building, tagging, and tools. The major goal is to explain the steps involved in the method so that readers may better understand this complex research framework and conduct MD research on their own. Multi-Dimensional Analysis is a method that allows the researcher to describe different registers (textual varieties defined by their social use) such as academic settings, regional discourse, social media, movies, and pop songs. Through multivariate statistical techniques, MDA identifies complementary correlation groupings of dozens of variables, including variables which belong both to the grammatical and semantic domains. Such groupings are then associated with situational variables of texts like information density, orality, and narrativity to determine linguistic constructs known as dimensions of variation, which provide a scale for the comparison of a large number of texts and registers. This book is a comprehensive research guide to MDA.

User's Guide

User's Guide
Author: Guillermo A. Riveros
Publisher:
Total Pages: 208
Release: 1996
Genre: CMITERW-LRFD (Computer program)
ISBN:

Similarity and Modeling in Science and Engineering

Similarity and Modeling in Science and Engineering
Author: Josef Kuneš
Publisher: Springer Science & Business Media
Total Pages: 451
Release: 2012-04-07
Genre: Mathematics
ISBN: 1907343776

The present text sets itself in relief to other titles on the subject in that it addresses the means and methodologies versus a narrow specific-task oriented approach. Concepts and their developments which evolved to meet the changing needs of applications are addressed. This approach provides the reader with a general tool-box to apply to their specific needs. Two important tools are presented: dimensional analysis and the similarity analysis methods. The fundamental point of view, enabling one to sort all models, is that of information flux between a model and an original expressed by the similarity and abstraction Each chapter includes original examples and applications. In this respect, the models can be divided into several groups. The following models are dealt with separately by chapter; mathematical and physical models, physical analogues, deterministic, stochastic, and cybernetic computer models. The mathematical models are divided into asymptotic and phenomenological models. The phenomenological models, which can also be called experimental, are usually the result of an experiment on an complex object or process. The variable dimensionless quantities contain information about the real state of boundary conditions, parameter (non-linearity) changes, and other factors. With satisfactory measurement accuracy and experimental strategy, such models are highly credible and can be used, for example in control systems.