Computer Analysis Of Visual Textures
Download Computer Analysis Of Visual Textures full books in PDF, epub, and Kindle. Read online free Computer Analysis Of Visual Textures ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Fumiaki Tomita |
Publisher | : Springer Science & Business Media |
Total Pages | : 179 |
Release | : 2013-11-11 |
Genre | : Computers |
ISBN | : 1461315530 |
This book presents theories and techniques for perception of textures by computer. Texture is a homogeneous visual pattern that we perceive in surfaces of objects such as textiles, tree barks or stones. Texture analysis is one of the first important steps in computer vision since texture provides important cues to recognize real-world objects. A major part of the book is devoted to two-dimensional analysis of texture patterns by extracting statistical and structural features. It also deals with the shape-from-texture problem which addresses recovery of the three-dimensional surface shapes based on the geometry of projection of the surface texture to the image plane. Perception is still largely mysterious. Realizing a computer vision system that can work in the real world requires more research and ex periment. Capability of textural perception is a key component. We hope this book will contribute to the advancement of computer vision toward robust, useful systems. vVe would like to express our appreciation to Professor Takeo Kanade at Carnegie Mellon University for his encouragement and help in writing this book; to the members of Computer Vision Section at Electrotechni cal Laboratory for providing an excellent research environment; and to Carl W. Harris at Kluwer Academic Publishers for his help in preparing the manuscript.
Author | : Michal Haindl |
Publisher | : Springer Science & Business Media |
Total Pages | : 304 |
Release | : 2013-01-18 |
Genre | : Computers |
ISBN | : 1447149025 |
This book surveys the state of the art in multidimensional, physically-correct visual texture modeling. Features: reviews the entire process of texture synthesis, including material appearance representation, measurement, analysis, compression, modeling, editing, visualization, and perceptual evaluation; explains the derivation of the most common representations of visual texture, discussing their properties, advantages, and limitations; describes a range of techniques for the measurement of visual texture, including BRDF, SVBRDF, BTF and BSSRDF; investigates the visualization of textural information, from texture mapping and mip-mapping to illumination- and view-dependent data interpolation; examines techniques for perceptual validation and analysis, covering both standard pixel-wise similarity measures and also methods of visual psychophysics; reviews the applications of visual textures, from visual scene analysis in medical applications, to high-quality visualizations in the automotive industry.
Author | : Chih-Cheng Hung |
Publisher | : Springer |
Total Pages | : 264 |
Release | : 2019-06-05 |
Genre | : Computers |
ISBN | : 3030137732 |
This useful textbook/reference presents an accessible primer on the fundamentals of image texture analysis, as well as an introduction to the K-views model for extracting and classifying image textures. Divided into three parts, the book opens with a review of existing models and algorithms for image texture analysis, before delving into the details of the K-views model. The work then concludes with a discussion of popular deep learning methods for image texture analysis. Topics and features: provides self-test exercises in every chapter; describes the basics of image texture, texture features, and image texture classification and segmentation; examines a selection of widely-used methods for measuring and extracting texture features, and various algorithms for texture classification; explains the concepts of dimensionality reduction and sparse representation; discusses view-based approaches to classifying images; introduces the template for the K-views algorithm, as well as a range of variants of this algorithm; reviews several neural network models for deep machine learning, and presents a specific focus on convolutional neural networks. This introductory text on image texture analysis is ideally suitable for senior undergraduate and first-year graduate students of computer science, who will benefit from the numerous clarifying examples provided throughout the work.
Author | : Majid Mirmehdi |
Publisher | : World Scientific |
Total Pages | : 424 |
Release | : 2008 |
Genre | : Computers |
ISBN | : 1848161158 |
Texture analysis is one of the fundamental aspects of human vision by which we discriminate between surfaces and objects. In a similar manner, computer vision can take advantage of the cues provided by surface texture to distinguish and recognize objects. In computer vision, texture analysis may be used alone or in combination with other sensed features (e.g. color, shape, or motion) to perform the task of recognition. Either way, it is a feature of paramount importance and boasts a tremendous body of work in terms of both research and applications.Currently, the main approaches to texture analysis must be sought out through a variety of research papers. This collection of chapters brings together in one handy volume the major topics of importance, and categorizes the various techniques into comprehensible concepts. The methods covered will not only be relevant to those working in computer vision, but will also be of benefit to the computer graphics, psychophysics, and pattern recognition communities, academic or industrial.
Author | : Chi Hau Chen |
Publisher | : World Scientific |
Total Pages | : 1045 |
Release | : 1999-03-12 |
Genre | : Computers |
ISBN | : 9814497649 |
The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.
Author | : Jyotismita Chaki |
Publisher | : Springer Nature |
Total Pages | : 109 |
Release | : 2019-10-24 |
Genre | : Technology & Engineering |
ISBN | : 9811508534 |
The book describes various texture feature extraction approaches and texture analysis applications. It introduces and discusses the importance of texture features, and describes various types of texture features like statistical, structural, signal-processed and model-based. It also covers applications related to texture features, such as facial imaging. It is a valuable resource for machine vision researchers and practitioners in different application areas.
Author | : Matti Pietikäinen |
Publisher | : Springer Science & Business Media |
Total Pages | : 213 |
Release | : 2011-06-21 |
Genre | : Mathematics |
ISBN | : 0857297481 |
The recent emergence of Local Binary Patterns (LBP) has led to significant progress in applying texture methods to various computer vision problems and applications. The focus of this research has broadened from 2D textures to 3D textures and spatiotemporal (dynamic) textures. Also, where texture was once utilized for applications such as remote sensing, industrial inspection and biomedical image analysis, the introduction of LBP-based approaches have provided outstanding results in problems relating to face and activity analysis, with future scope for face and facial expression recognition, biometrics, visual surveillance and video analysis. Computer Vision Using Local Binary Patterns provides a detailed description of the LBP methods and their variants both in spatial and spatiotemporal domains. This comprehensive reference also provides an excellent overview as to how texture methods can be utilized for solving different kinds of computer vision and image analysis problems. Source codes of the basic LBP algorithms, demonstrations, some databases and a comprehensive LBP bibliography can be found from an accompanying web site. Topics include: local binary patterns and their variants in spatial and spatiotemporal domains, texture classification and segmentation, description of interest regions, applications in image retrieval and 3D recognition - Recognition and segmentation of dynamic textures, background subtraction, recognition of actions, face analysis using still images and image sequences, visual speech recognition and LBP in various applications. Written by pioneers of LBP, this book is an essential resource for researchers, professional engineers and graduate students in computer vision, image analysis and pattern recognition. The book will also be of interest to all those who work with specific applications of machine vision.
Author | : Fumiaki Tomita |
Publisher | : Springer |
Total Pages | : 173 |
Release | : 2013-08-21 |
Genre | : Computers |
ISBN | : 9781461315544 |
This book presents theories and techniques for perception of textures by computer. Texture is a homogeneous visual pattern that we perceive in surfaces of objects such as textiles, tree barks or stones. Texture analysis is one of the first important steps in computer vision since texture provides important cues to recognize real-world objects. A major part of the book is devoted to two-dimensional analysis of texture patterns by extracting statistical and structural features. It also deals with the shape-from-texture problem which addresses recovery of the three-dimensional surface shapes based on the geometry of projection of the surface texture to the image plane. Perception is still largely mysterious. Realizing a computer vision system that can work in the real world requires more research and ex periment. Capability of textural perception is a key component. We hope this book will contribute to the advancement of computer vision toward robust, useful systems. vVe would like to express our appreciation to Professor Takeo Kanade at Carnegie Mellon University for his encouragement and help in writing this book; to the members of Computer Vision Section at Electrotechni cal Laboratory for providing an excellent research environment; and to Carl W. Harris at Kluwer Academic Publishers for his help in preparing the manuscript.
Author | : A. Ravishankar Rao |
Publisher | : Springer Science & Business Media |
Total Pages | : 221 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1461397774 |
A central issue in computer vision is the problem of signal to symbol transformation. In the case of texture, which is an important visual cue, this problem has hitherto received very little attention. This book presents a solution to the signal to symbol transformation problem for texture. The symbolic de- scription scheme consists of a novel taxonomy for textures, and is based on appropriate mathematical models for different kinds of texture. The taxonomy classifies textures into the broad classes of disordered, strongly ordered, weakly ordered and compositional. Disordered textures are described by statistical mea- sures, strongly ordered textures by the placement of primitives, and weakly ordered textures by an orientation field. Compositional textures are created from these three classes of texture by using certain rules of composition. The unifying theme of this book is to provide standardized symbolic descriptions that serve as a descriptive vocabulary for textures. The algorithms developed in the book have been applied to a wide variety of textured images arising in semiconductor wafer inspection, flow visualization and lumber processing. The taxonomy for texture can serve as a scheme for the identification and description of surface flaws and defects occurring in a wide range of practical applications.
Author | : Ayman El-Baz |
Publisher | : CRC Press |
Total Pages | : 271 |
Release | : 2024-06-21 |
Genre | : Computers |
ISBN | : 1040008909 |
The major goals of texture research in computer vision are to understand, model, and process texture and, ultimately, to simulate the human visual learning process using computer technologies. In the last decade, artificial intelligence has been revolutionized by machine learning and big data approaches, outperforming human prediction on a wide range of problems. In particular, deep learning convolutional neural networks (CNNs) are particularly well suited to texture analysis. This volume presents important branches of texture analysis methods which find a proper application in AI-based medical image analysis. This book: Discusses first-order, second-order statistical methods, local binary pattern (LBP) methods, and filter bank-based methods Covers spatial frequency-based methods, Fourier analysis, Markov random fields, Gabor filters, and Hough transformation Describes advanced textural methods based on DL as well as BD and advanced applications of texture to medial image segmentation Is aimed at researchers, academics, and advanced students in biomedical engineering, image analysis, cognitive science, and computer science and engineering This is an essential reference for those looking to advance their understanding in this applied and emergent field.